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Abstract 

We study observations of a fireball that occurred in Kylmälä, Finland with the aim of determining 
its Keplerian orbital elements. The fb_entry program is used to determine the fireball’s trajectory based 
on the observations. The orbit is then determined using this trajectory as the input parameters with the 
Meteor Toolkit software. We successfully determine the fireball’s orbit, which appears to be an ordinary 
near-Earth asteroid orbit. We find that the fireball’s semi-major axis is 1.94 AU, which corresponds to 
the inner edge of the main asteroid belt and gives cause to suspect that the object originated in the main 
belt and evolved into a NEA due to the effect of the secular ν6 resonance. Several related bodies were also 
identified. 
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1 Introduction 

The Earth’s atmosphere is impacted daily by hundreds of tons of small objects 
from space, nearly all of which are destroyed as they pass through the atmosphere. Dur-
ing their fall, the objects heat up and begin to glow, and thus larger impacting objects 
may be seen as meteors. According to the definition of the International Astronomical 
Union (IAU) bright meteors (apparent magnitude of V = −4 mag or brighter) are called 
fireballs. The International Meteor Organization (IMO), in turn defines a fireball as a 
meteor that would have a magnitude of V = −3 mag or brighter when seen at the zenith. 
This definition corrects for the dimming of the brightness of a fireball due to the greater 
distance and atmospheric absorption when the fireball is seen near the horizon. While 
larger ones with sufficiently low entry velocity can reach the ground and cause an im-
pact, smaller meteoroids usually burn out in the atmosphere and there are several reports 
of such in Finland throughout the year. For a more comprehensive review of meteors, 
there are numerous papers and books on the subject, for instance Mason (1984). 

In this study, we use the fb_entry (Lyytinen and Gritsevich, 2013) software devel-
oped for trajectory analysis of meteors to determine the recent Kylmälä fireball’s trajec-
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tory and then utilize the Meteor Toolkit (Dmitriev et al., 2015) software which numeri-
cally integrates a meteor’s equations of motion to determine the fireball’s orbit based on 
the trajectory and any potential parent bodies. 

Table 1. Coordinates and operators of the used FFN stations. 

FFN station Altitude (km) Longitude Latitude Camera operator 

Oulu 0.02 25.43689900 65.04730200 Jarmo Moilanen 

Kempele 0.01 25.53616667 64.86202778 Jarmo Leskinen 

Muhos 0.065 26.01337166 64.95492848 Pekka Kokko 

Vesanto 0.11 26.36860000 62.89180000 Timo Kuhmonen 

Lappeenranta 0.078 28.56595609 61.15328448 Toni Hallikas 

Tampere 0.12 23.61851833 61.49577352 Jari Juutilainen 

 

2 Observations 

The fireball appeared at 19:45:13 UT on the 25th of March, 2015. The observa-
tions we used for this work were taken by the Finnish Fireball Network (FFN), which 
is a network established in 2002 consisting of 24 active stations with permanent in-
strumental setups that continuously monitor the skies above Finland and its neighbor-
ing areas for meteors and fireballs. Recently, FFN observations also enabled recovery 
of the Annama meteorite (Gritsevich et al., 2014; Trigo-Rodríguez et al., 2015; Ko-
hout et al., 2015; Kohout et al., 2017). 

The Kylmälä fireball was observed by a total of 6 different FFN sites shown in 
(Fig. 1). The Lappeenranta and Tampere stations were equipped with digital cameras 
while the other four sites are equipped with video cameras. We used data from each of 
these (Detailed in Table 1) for estimating the trajectory of the fireball with lower 
weight given to the Muhos and Oulu sites due to observational constraints. Interesting-
ly, analysis of only two images of the fireball taken at the Muhos and Vesanto sites 
yields a similar trajectory solution compared to the analysis with all six stations. Im-
ages of the fireball taken at the Muhos and Vesanto sites are shown in Figure 2. 

3 Results 

We calculated the fireball’s atmospheric trajectory values with the flexible fireball 
entry track calculation program fb_entry1 (Lyytinen and Gritsevich, 2013), which is 
commonly used with raw FFN data. The resulting trajectory is shown in Table 2. As 
fb_entry does not directly give any error estimates, the errors were estimated with the 
program by obtaining a set of different solutions with the program with different com-
binations of the stations’ data and different weight values assigned to individual obser-
vations. The error analysis of the orbit is described in detail by Dmitriev et al. (2015). 

                                                 
1 http://lyytinen.name/esko/fb_entry_vers_1.zip 
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We attempted to use the Meteor Toolkit’s related bodies search function for de-
tecting any objects with related orbits and successfully found several possible parent 
bodies. For this purpose we chose to use the D SH criterion which is used to compare 
the similarity between the orbits of two bodies (for a detailed explanation of the criteri-
on, see e.g. Southworth and Hawkins (1963)). The best 5 candidates based on the crite-
rion are shown in Table 4. 

Table 4. The Kylmälä fireball and the 5 best related objects as found with the D SH criterion. 

Family Name a (AU) e i (°) Ω (°) ω (°) (D SH)2 

 Kylmälä-FB 1.9403 0.4864 4.5451 4.7301 175.9306  

Apollo (2012 FM) 1.9413 0.4849 3.2158 11.3427 151.3998 0.0006101 

Apollo (2009 ER) 1.8946 0.4683 4.4459 350.0966 154.2259 0.0008482 

Apollo (2012 DW32) 1.9431 0.4805 3.1833 354.6458 179.0886 0.0009005 

Amor (2009 SN1) 1.9580 0.4778 4.1496 357.5652 33.6979 0.0009455 

Apollo (1999 FR5) 1.8515 0.4780 3.8559 355.8531 148.9534 0.001251 

4 Discussion 

The derived trajectory corresponds to the value of ballistic coefficient α = 24.00 
and a relatively low mass loss rate described by the parameter β = 0.64; see Gritsevich 
(2009); Lyytinen and Gritsevich (2016) for a general description and other examples of 
the parameters. The ballistic coefficient is somewhat higher than for the Pribram, Lost 
City, Innisfree Neuschwanstein, Park Forest and Košice meteorite falls (Gritsevich, 
2008b; Meier et al., 2017; Gritsevich et al., 2017), but is comparable to e.g. the Bunbur-
ra Rockhole case (Sansom et al., 2014, 2015; Sansom, 2017). These values according to 
Gritsevich (2008a); Gritsevich et al. (2012) allow us to suspect possible meteorite fall 
and estimate a terminal survived mass of about 0.82 kg despite the entry mass of mete-
oroid being relatively low (approximately 5 kg assuming a bulk density of 3.3 g/cm3). 
Some preliminary meteorite searches were conducted by the FFN (see the map at Fig. 
4), but no fragments have been recovered so far. 

To elucidate the reader on how the Kylmälä fireball’s determined orbit compares 
to other minor planets in the inner solar system, we have chosen to include plots of 
known minor planet semi-major axes versus their eccentricities and inclinations. These 
plots are shown in Figure 5. From the semi-major axis, it is clear that the fireball’s orbit 
appears to be situated on the edge of the main asteroid belt. The semi-major axis match-
es that of the Hungaria asteroid family, which is seen as a concentration of asteroids 
with a similar semi-major axis. The inclination however is quite low. The Hungarias 
have a much higher inclination in comparison; from this one may infer that the object 
most likely did not originate from the Hungaria family. In comparison to main belt as-
teroids, the eccentricity is quite high, which is what one would expect from a near-earth 
asteroid. Considering this and the semi-major axis being situated on the inner edge of 
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5 Conclusions 

We have studied in detail the Kylmälä fireball (FN20150325) - one of the recent 
potentially meteorite-producing cases registered by the Finnish Fireball Network. We 
have successfully determined the Kylmälä fireball’s orbit based on reconstructed at-
mospheric trajectory and ascertained that it most likely originated from the inner aster-
oid belt and has a fairly ordinary NEA orbit. A possible meteorite fall was predicted, 
though conducted brief meteorite searches have been unsuccessful. 
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