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Abstract 

The combining of multiple models is a technique used in forecasting to improve results over 
individual models. In this paper, we describe a method to produce an optimal composite forecast by 
decorrelating the original source data, similar to Principal Component Analysis, and combining the 
decorrelated components with observed data in an optimal manner. As a test of the performance of the 
method, we used water level forecasts of varying quality from the Finnish Baltic Sea coast, together with 
tidegauge measurements. The tests show a 5-25% improvement of the forecast error over the best 
original forecast. The method is robust and suitable for operational use to produce forecasts without 
human intervention. 
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1. Introduction 

The mutually cancelling effect of various independent error sources on different 
forecasts of the same phenomenon gives rise to the ensemble property: the results from 
different models describing the same phenomenon, affected to various degrees by 
unrelated error sources, become distributed around the true value of the forecast 
variable. This variable could be almost any quantitative and measurable value. 

Assuming that there are a large number of different, independent factors 
contributing to the error in each forecast, the central limit theorem would suggest that 
the various forecasts should be normally distributed around their mean value, thus the 
sample mean being the best estimate of the true value. This is the basis of multi-model 
forecasting, on which there exists plenty of previous research (see e.g. Wandishin et al., 
2001; Hagedorn et al., 2005). 

In practice, the assumptions of normal distribution and sample mean estimates are 
dubious at best. Relying on the simple mean may or may not improve the result over the 
individual forecasts when they are of different quality and the error sources are related 
to some degree, as indeed usually is the case. This notion suggests that a method which 
evaluates the quality of the various forecasts and takes the quality into account when 
building a composite forecast would be a useful tool in improving the quality of 
forecasts, as noted by Krishnamurti et al. (2000). 
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In this paper, we describe an optimal averaging method for forecasts, making use 
of data whitening to attempt to extract hidden variables from the forecasts, then using 
the obtained variables to build a composite forecast. For the sake of clarity, we assume 
that the forecast and measured variables will be in the form of time series, which is 
usually the case, but the method can be easily used for prediction over spatial (or any 
other) variables, as well as interpolation of missing data. 

2. Motivation 

For m different models describing the variable of interest, and n samples from 
each, let X be a m × n matrix containing a forecast time series on every row, each scaled 
to zero mean and unit variance and linearly independent of each other. Additionally, let 
o be a vector of length n, also scaled to zero mean and unit variance, containing the 
observed variable corresponding to the rows of X.  

In an attempt to extract information found in independent “hidden” variables that 
affect the errors in various forecasts to different degrees, we perform a transformation S 
= TX such that, using the common Rn inner product notation (for column vectors) 

, T
k k

k
x y< >= =∑x y x y  (1) 

it holds (within numerical precision) that 
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Such a transformation is achieved with 

1/2−=T C  (3) 

1n−= TC XX  (4) 

because then, as the covariance matrix C is always symmetric (see below), 

1/2 1/21 1 .T T T

n n
− −= = =SS TXX T C CC I  (5) 

1/2−C  can be computed from the eigendecomposition 

−= Λ 1C V V  (6) 

as 

1/2 1/2− − −= Λ 1C V V  (7) 

which is simple to compute as Λ is diagonal. 
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The covariance matrix C is symmetric as 

( )T T T T= = =C XX XX C  (8) 

and positive semi-denite, since by the denition of inner product, for any y 

( ) ( ) , 0.T T T T T T T T= = =< >≥y Cy y XX y X y X y X y X y  (9) 

Since we demanded rows of X to be linearly independent, the covariance matrix C 
is nonsingular and thus positive-denite. Therefore its eigenvalues are positive (Pearson, 
1974) and 1/2−C  is guaranteed to exist and be real. 

The above procedure is well known and often referred to as "whitening" the data. 
It is essentially the Principal Component Analysis (Haykin, 1999) without 
dimensionality reduction. A dimensionality reduction step could be used for the method 
described in this article, and has the known benefit of reducing noise and preventing 
overlearning, but it is not generally necessary as the weight determination method 
already reduces the influence of less significant components, and dimension reduction 
would introduce new free parameters. The number of dimensions in the input data is 
also often small, further reducing the need to use dimension reduction. 

3. Derivation 

In order to obtain a composite forecast, we need to estimate an optimal prediction 
using the uncorrelated components. Our goal is to determine a weight vector w such that 
the linear combination of the components, Tw S , optimally predicts the observed values 
o. As a measure of optimality, we use the square of the correlation 

2 2( ) Corr( , )Tc =w w S o . 
Since mean values of the rows of X are zero, so is that of Tw S , as regardless of 

w, as 

1E( ) E( ) 0.T T
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The variance is 
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and thus we can define Tw S  to have unit variance by requiring that 

, 1.< >=w w  (12) 



50 Jussi Leinonen and Kimmo K. Kahma 

The zero mean and unit variance guarantee that the correlation is equal to the 
covariance Cov( , )Tw S o . Then we have 

( ) Corr( , )Tc =w w S o  ( 1 ) ,T T T

n
= < >w S o  

 1 T T

n
= w So  

 1 , . T

n
= < >w So  (13) 

We can now show that the optimal choice is 
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Firstly, it satisfies the constraint , 1< >=w w  as 
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Secondly, it can be shown that it is indeed the optimal choice: let w  be any vector of 
size m such that 

,< >w w  = 1 (16) 

w  . T′≠ S o  (17) 

Then we have from the Cauchy-Schwarz inequality that 

2, T′< >w S o  ≤  , ,T T′ ′< >< >w w S o S o  

 = 1 

 = 2,T T′ ′< >S o S o  (18) 

 = 2, .T′< >w S o  (19) 

Thus the optimal weight coefficients wi are the correlations of the corresponding 
component Si and the observation o. With these coefficient known, the optimal forecast 
estimate is then obtained by re-scaling the estimate Tw S  to the appropriate mean and 
variance (or standard deviation). If observed data are available for the entire time range 
of the estimate, we can simply use the observed mean and variance. In the next section, 
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we discuss the more realistic case, in which we attempt to estimate the optimal forecast 
for a period where the measurement is unavailable. 

One should note that the approach described above very closely resembles the 
estimation of a function in an incomplete orthogonal basis. 

4. Learning prediction 

To be useful as a forecast tool, the method must be able to be used when no 
measured time series is available. To achieve this, we determine the optimal coefficients 
for a period where the true value is known, and then apply those coefficients for periods 
without a measurement. For purposes of evaluating the learning ability, we divided our 
dataset in two parts, called (per the convention in learning systems) the teaching set and 
the test set. In the teaching set, we use both the forecasts and the observation to “teach” 
the proper coefficients and transformation matrices to the system; in the test set, the 
observation is only used to evaluate the performance and learning ability of the method. 

Formally, we proceed as follows: 

1. Determine the whitening transformation and optimal coefficients, as 
described in the previous sections, for the teaching dataset 1X , to obtain the 
transformation matrix 1/2

1
−C  and the weight coefficients 1w . 

2. Apply the transformation matrix to the test dataset 2X  to obtain 

1/2
12 1 2.−=S C X  (20) 

3. Estimate the observed value for the test set as 

12 1 12.T=e w S  (21) 

As 12e  is still scaled to non-physical mean and variance, we need to rescale it to 
obtain the values on a proper scale. For both the mean and the standard deviation, we 
have used a weighted average of the corresponding values for the different forecasts, 
using as the weights the correlation of the forecast with the measurement in the teaching 
set 1X o , normalised such that the sum of the weights is 1. 

5. Experiments 

We have used the learning forecast method on water level forecasts for the coast 
of Finland. Three Baltic Sea water level models were used, originating from different 
sources: the Swedish Meteorological and Hydrographical Institute (SMHI) model, the 
German Federal Maritime and Hydrographic Agency (Bundesamt für Seeschifffahrt und 
Hydrographie, BSH) model and the Wetehinen model being developed at the Finnish 
Meteorological Institute. The SMHI model (Funkquist, 2001) and the BSH model are 
both 3D hydrodynamic models based on the same code from BSH (Dick, 2001). While 
the two models have developed further, and the codes are no longer exactly identical, 
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the main differences are in the operational implementations. The Wetehinen model, on 
the other hand, is a less sophisticated 2D model and has a much higher forecast error 
than the other two. 

The data from each forecast was level-corrected as a pre-processing step to 
compensate for level drifting and different reference water levels. This was done by 
adjusting the data at each sample by the difference of the mean values of the forecast 
and observed values for the previous week. This aims to make the weekly averages 
equal for forecasts and measurements without evaluating future data (which would not 
be available for an operational forecast). 

Our dataset consisted of measured and forecast water level values for the coast of 
Finland from June to December, 2007. The number of data points in the set was 
n = 1810. In operational use, the method would likely be taught with data from the 
previous few months of forecasts and measurements. For testing purposes, the dataset 
was divided into two halves of equal size (the earlier half called A and the later one 
called B). We alternated them as the teaching and test sets and evaluated the results. As 
a measure of forecast error, we used the root-mean-square error (RMSE) 

2
RMS fc, obs,

1 ( )
n

k k
k

e x x
n

= −∑  (22) 

where fcx  and obsx  are the forecast and observed data, correspondingly. We used the 
RMSE here because it provides simple, physically meaningful values, however, one 
should note that since our method is designed using the correlation as the measure of 
forecast error, the final estimate may not always be exactly optimal in the RMSE sense 
(although a correlation of 1 does imply an RMSE of 0). 

In Table 1, summarised in Figure 1, we present the errors from different 
combinations of teaching and testing sets at different sites. For comparison, we also 
show the errors of the original forecasts. We see that for both selections of the test set, 
the combined forecast always improves the quality of the forecast over the best 
individual source, despite there often being considerable differences in the errors of the 
originals. Thus we see that useful information that improves the combined forecast can 
be extracted even from the poorer quality forecasts. Figure 2 is an example of the 
behaviour of the combined estimate. 

We also compare the performance of the method to an intuitive alternative, a 
weighted average that uses as the weights the normalised inverse values of the RMSE of 
the corresponding forecasts. This approach also tends to outperform the best individual 
forecast. Our method produces significantly better results than the weighted average in 
two cases (Kemi and Kaskinen), and does about equally well in the two others. 
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Table 1. The RMS errors (cm) for various forecast types and locations on the coast of Finland. 

Forecast  Kemi  Kaskinen  Föglö  Helsinki  

A teaching and testing  4.10  2.61  2.18  3.10  

B teaching and testing  5.15  3.33  2.28  3.57  

B teaching, A testing  4.17  2.64  2.37  3.24  

A teaching, B testing  5.24  3.33  2.42  3.66  

A+B teaching and testing  4.70  3.02  2.30  3.37  

Weighted average (A+B)  4.79  3.14  2.29  3.38  

SMHI (A)  4.51  2.85  2.55  4.14  

SMHI (B)  5.86  3.64  3.04  4.87  

SMHI (A+B)  5.23  3.27  2.80  4.52  

BSH (A)  5.87  3.47  2.77  4.25  

BSH (B)  8.42  4.57  3.45  4.87  

BSH (A+B)  7.26  4.06  3.13  4.57  

Wetehinen (A)  7.95  5.46  3.82  6.44  

Wetehinen (B)  11.63 6.15  2.98  5.59  

Wetehinen (A+B)  9.96  5.81  3.42  6.03  
 

 

Fig. 1. Summary of the results for the RMS error of various methods for the B set. Bars are in the same 
order as in the plot legend. 
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Fig. 2. The composite forecast and the best original (SMHI) forecast compared to the measured water 
level at the Helsinki site. 

Tables 2 and 3 show the same analysis as Table 1, but with the RMSE evaluated 
only for the 10 % of highest and lowest water levels, respectively. For the extremes, the 
result is still usually (though not always) improved. Since we are sampling the error 
estimate from a limited subset of the data, there is no theoretical guarantee of optimality 
for the teaching set, as can be seen from the case of high water in Kaskinen, where 
using the A set for teaching and the B set for testing gives a better result than using the 
B set for both teaching and testing. An alternate solution would have been to use only 
the extreme data for teaching, but experiments with this indicated that it leads to poor 
results when different teaching and test sets are used. This is probably due to the small 
size of the teaching set (about 220 data points) when only maxima and minima are used, 
though it may also indicate that using only the extremes is not sufficient to characterize 
the behaviour of the various sources. It is notable and relevant to applications that the 
advantage of our method over the weighted average is much more pronounced at the 
extrema than it is in the full dataset. 

The measured water levels and the corresponding forecasts at the highest and 
lowest levels (measured from peak maxima and minima, respectively) at each site are 
found in Table 4. The results are somewhat mixed, and it can be seen that when the 
error of the source forecasts is large, so is that of the composite. This is not surprising: if 
the sources do not contain the information from which to predict the correct water level, 
there is little room for computational improvement. Another source that can contribute 
to errors near peak levels is the difference in the peak timings for various models; the 
composite method does not attempt to correct for such timing errors. Figure 3 shows 
that for the typical extremal cases these errors are usually not very large compared to 
the width of the peaks, although the shapes of the peaks differ. 
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Table 2. The RMS errors (cm) for various forecast types and locations on the coast of Finland for the 
10 % of highest water levels. 

Forecast  Kemi Kaskinen  Föglö  Helsinki  

A teaching and testing 7.03 3.59 2.34 4.22 

B teaching and testing 8.29 3.67 2.29 4.74 

B teaching, A testing 7.09 3.74 2.66 4.57 

A teaching, B testing 8.49 3.51 2.48 4.93 
A+B teaching and testing  7.61  3.88  2.47  4.78  

Weighted average (A+B)  7.81  3.98  2.46  4.86  

SMHI (A) 7.81 3.70 2.61 4.67 

SMHI (B) 9.88 4.85 4.38 6.87 

BSH (A) 8.00 4.95 2.97 6.40 

BSH (B) 14.53 5.19 3.79 6.64 

Wetehinen (A) 12.41 6.27 4.14 8.95 
Wetehinen (B)  16.97 5.06  2.85  6.45  

 

Table 3. The RMS errors (cm) for various forecast types and locations on the coast of Finland for the 
10 % of lowest water levels. 

Forecast  Kemi Kaskinen  Föglö  Helsinki  

A teaching and testing 4.55 2.37 2.36 2.71 

B teaching and testing 6.05 3.23 2.22 3.17 

B teaching, A testing 5.04 2.67 3.13 2.79 

A teaching, B testing 6.13 3.27 2.09 3.42 
A+B teaching and testing  5.28 2.49 2.28 3.10 

Weighted average (A+B)  5.43  2.82 2.53  3.38  

SMHI (A) 5.04 2.62 3.22 3.35 

SMHI (B) 5.79 3.56 2.59 4.43 

BSH (A) 6.58 3.09 2.99 3.97 

BSH (B) 11.67 4.90 2.64 4.22 

Wetehinen (A) 6.66 5.19 4.52 6.32 
Wetehinen (B)  15.64 6.84 3.36 6.81 
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Fig. 3. The behaviour of the different forecasts at extremal values of the water height in Helsinki. 

Table 4. The highest and lowest measured water levels (cm) for each site and the corresponding forecasts. 

Case  Measurement  Composite  SMHI  

Kemi (high)  86 80 82 

Kemi (low)  -62 -48 -47 

Kaskinen (high)  47 44 46 

Kaskinen (low)  -35 -31 -28 

Föglö (high)  45 49 52 

Föglö (low)  -13 -14 -17 

Helsinki (high)  71 63 66 

Helsinki (low)  -56 -45 -42 
 

As the composite forecast is computed as T T=w S w TX , the relative importance of 
the normalised models can be seen from the vector Tw T . These are shown for the full 
dataset at each location in Table 5. Since the result is a weighted average of the 
normalized forecasts, there tends to be some smoothing of the values. However, 
negative weights may also be assigned to the forecasts, which shows that the difference 
of forecasts can also contain relevant information. Interestingly, this happens in the case 
of Kaskinen, where the composite method also does best compared to the weighted 
average. We also show the eigenvalues of the correlation matrix in Table 6. It shows 
that largest eigenvalue is several orders of magnitude larger than the others in all cases, 
which indicates that the less significant components have importance mainly in fine-
tuning the result. 
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Table 5. The model weights wTT for the full dataset A+B at each location, normalized to a sum of 1. 

 Kemi Kaskinen Föglö Helsinki 

SMHI 0.68 0.69 0.40 0.36 

BSH 0.30 0.32 0.33 0.46 
Wetehinen 0.03 -0.01 0.27 0.18 

 
 

Table 6. The eigenvalue vectors Diag(Λ) of the correlation matrix C for each location. 

Kemi Kaskinen Föglö Helsinki 

13.0
0.350
0.170

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 
4.66

0.0936
0.0460

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 
3.82

0.0608
0.0329

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 
4.76

0.179
0.0787

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 

6. Conclusions 

We have described an optimal method to estimate coefficients to produce 
composite forecasts from several independent sources. To achieve an optimal forecast, 
the method combines uncorrelated components of the original forecasts by maximizing 
the correlation of the result with a previously known measurement. Having been taught 
in this manner, the predictor can be used to make actual forecasts for the future or other 
periods where the observed value is not available. 

We used the predictor to create forecasts for water level at the coasts of Finland. 
Three models were used in the test: Two were nearly identical with main differences in 
the operational implementation. The third one was inferior compared with the two 
others. One could think that this kind of combination would not improve the accuracy or 
to be at best as good as the most accurate model. Our results show the opposite. For 
every test case, the composite forecast provides a considerable (5–25 %) improvement 
over the best individual forecast. This demonstrates the ability of the method to use 
information from multiple forecasts of different overall quality.  

It should also be noted that the result is achieved with a fairly straightforward, 
linear algorithm. The advantage of this is its small number of free parameters, which 
prevents overlearning of the teaching data. This makes the method especially robust in 
operational use, the only concern being the requirement of linear independence, which 
usually holds in practice, but should be evaluated before running the analysis. Extending 
the method to use non-linear prediction such as the multilayer perceptron (Haykin, 
1999) should be possible, though it may come at the expense of generalization ability. 
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