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Abstract 

Analytical, purely model-based probability distributions are derived for the instantaneous global 
mean warming resulting from a gradual doubling of CO2 (TCR = transient climate response) and for the 
equilibrium global mean warming caused by a doubling of CO2 (CS = climate sensitivity). For TCR, the 
estimated 5-95% uncertainty range based on the results of 20 models is 1.0-2.4 °C when assuming a 
normal, and 1.1-2.5 °C when assuming a lognormal form of the distribution. The corresponding num-
bers for CS, based on 15 models, are 2.0-5.0 °C and 2.1-5.3 °C. The limited sample size makes it difficult 
to estimate the form of the distributions reliably. For TCR, however, the lognormal distribution fits the 
data better than the normal distribution, although this conclusion is critically dependent on one extreme 
model. The parameters that define the location (mean or median) and width (standard deviation) of the 
underlying distribution are also potentially sensitive to sampling variability. For estimating the 5-95% 
uncertainty range of warming, this aspect of sampling uncertainty dominates over the differences be-
tween the normal and the lognormal distributions. The derived probability distribution of CS is generally 
consistent with estimates based on other methods, although some recent studies have placed the upper 
bound of the uncertainty range substantially higher than that found in the present analysis. 
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1. Introduction 

In assessment of anthropogenic climate change, the single most widely used pa-
rameter is the change in global mean surface air temperature. Cubasch et al. (2001) es-
timated a global warming of 1.4-5.8 °C from 1990 to 2100, taking into account differ-
ences between seven climate models and uncertainty about future greenhouse gas and 
aerosol emissions. To characterize that part of the uncertainty that is directly related to 
models (rather than to emissions), two numbers are commonly used: climate sensitivity 
(CS) and transient climate response (TCR). These are both determined from idealized 
model experiments in which the CO2 concentration is doubled. CS is the equilibrium 
global mean warming resulting from a doubling of CO2. If the CO2 concentration in the 
real world  would  double,  and  then stabilize at this level, the global mean temperature  
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would approach its new equilibrium in the course of several centuries. TCR measures 
the warming that would already be realized by the time of the doubling of CO2, 
assuming a compound 1% per year increase in CO2 that leads to doubling in 70 years. 
Thus, although these two measures of climate change are both idealized, TCR is likely 
to be the more practically relevant of them in the short run but CS in the long run. 

Cubasch et al. (2001) reported CS for 15 and TCR for 19 climate models. Among 
these models, CS varied from 2.0 °C to 5.1 °C and TCR from 1.1 °C to 3.1 °C. 
However, the simulated CS and TCR values have apparently not yet been converted to 
objective, analytical probability distributions. Wigley and Raper (2001) derived 
probability distributions for the global warming from 1990 to 2100, but using in their 
calculations somewhat arbitrarily specified rather than directly model-based 
distributions for CS. 

In this study, we derive analytical probability distributions for CS and TCR by 
using the distribution of CO2-induced global warming in different climate models. We 
also discuss the question how well these probability distributions can be estimated 
using a relatively limited sample of model results, as well as the sensitivity of the 
conclusions to the assumed form of the distributions. 

The present study is basically a curve-fitting exercise. As such, it has a very 
important caveat: there is no a priori guarantee that CS and TCR in the real world are 
within the probability distributions suggested by models. In particular for CS, there 
have been several attempts to estimate this parameter with more elaborate methods. To 
put the present results in a perspective, some of these earlier studies are also briefly 
discussed in this paper. 

2. Data set 

The TCR is evaluated for 20 coupled atmosphere-ocean general circulation mod-
els (GCMs) participating in CMIP2, the second phase of the Coupled Model Intercom-
parison Project (Meehl et al., 2000). An 80-year control run with constant (“present-
day”) CO2 and an 80-year greenhouse run with a gradual (1% per year compound) in-
crease in CO2 have been conducted with each model. The TCR is calculated as the dif-
ference in 20-year average global mean surface air temperature between the years 61-80 
in the greenhouse runs and the same period in the control runs. Except for the Institute 
for Numerical Mathematics model (INMCM; Diansky and Volodin (2002)) that joined 
CMIP2 later than the others, all 20 models are detailed in Table 9.1 of Cubasch et al. 
(2001). The 15 values of CS used in this study are directly from the same table. In con-
trast to TCR, the CS values come from experiments in which the atmospheric part of 
the coupled GCM was connected to a shallow mixed-layer ocean. Thus, these experi-
ments do not account for eventual changes in ocean circulation that might also be rele-
vant on centennial time scales. Feedbacks between climate and changing vegetation 
distribution are also neglected in the models used for this study. 

Fig. 1 shows the simulated TCR and CS in the various models, ordered in as-
cending order of TCR. Although CS appears for 16 models in the figure, only 15 values 
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are used below. Two of the coupled models in CMIP2, CSM and DOE PCM, share the 
same atmospheric component and thus the same CS (however, CSM and DOE PCM are 
treated separately in the TCR analysis, although they are close relatives). Also note that 
in one case (GISS), different versions of the atmospheric model were used when evalu-
ating CS and TCR. 

 

Fig. 1. The values of TCR (darker shading) and CS (lighter shading) in the models used in this study. 
The model names follow Table 9.1 of Cubasch et al. (2001). 

Among the models shown in Fig. 1, TCR varies from 1.0 °C in INMCM to 3.1 °C 
in CCSR/NIES2. The range for CS is 2.0-5.1 °C. Although the two quantities are cor-
related (r = 0.72), the ratio between them also varies substantially. At least a part of this 
variation is associated with differences in ocean heat uptake between the models (Raper 
et al. 2002). In addition, the balance between the positive and negative feedback proc-
esses that regulate the magnitude of warming may change with climate state. Thus, the 
net feedback may be either more positive or more negative in the new equilibrium cli-
mate than during the transient phase of the warming, but models disagree on the direc-
tion of the change (Boer and Yu 2003). Finally, as already noted, the atmosphere – 
mixed-layer ocean models used to derive CS cannot account for changes in ocean cir-
culation. 

3. Analytical probability distributions and their sampling uncertainty 

Let us assume that the 20 TCR values and 15 CS values are both random samples 
of some underlying probability distributions, neglecting the fact that the models are not 
necessarily independent from each other (because, for example, they often share com-
mon parameterization packages for the description of sub-grid scale processes). Let us 
also assume that the underlying distributions can be expressed in analytical form. To 
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define the distributions, one needs to (i) choose their assumed form and (ii) estimate the 
numeric parameters that determine their location (e.g., the mean or the median) and 
width (e.g., standard deviation). The first step is largely guessing. Although one can try 
to eliminate bad candidates of the form by statistical testing, this is in practice difficult 
when the sample is small (see below). 

We consider two alternative forms for the distributions: the normal distribution 
and the two-parameter (lower bound zero) lognormal distribution, the latter of which 
was used by Wigley and Raper (2001). Fig. 2 shows the resulting normal and lognormal 
fits to the TCR and CS data (see the Appendix for equations), together with histograms 
of the original values. An inspection of Fig. 2a suggests that the TCR data are not de-
scribed well by a normal distribution, although this impression is essentially caused by 
CCSR/NIES2 that simulates a much larger TCR than any of the other models. The log-
normal distribution appears to give a somewhat better fit. For CS (Fig. 2b), discrepan-
cies between the data and each of the two analytical distributions seem more modest. 

 

Fig. 2. Normal (solid line) and lognormal (dashed line) probability distributions fitted to (a) TCR in 20 
models and (b) CS in 15 models. The bars show histograms of the original data with a bin width of 
0.3 °C. 

To check the visual impressions statistically, the skewness (A3) and kurtosis (A4) 
of the TCR and CS data sets were computed, first for the data as such and then after a 
logarithmic transformation (which converts a lognormal distribution to normal). The 
resulting values were then compared with the corresponding sampling distributions de-
rived from Monte Carlo simulations with normally distributed random numbers. Both 
the skewness and the kurtosis of the TCR data exceed the 99th percentiles obtained in 
the Monte Carlo simulations (Table 1), so that the normal distribution can be rejected at 
2% significance level using a two-sided test. Because the logarithmic transformation 
reduces the skewness and kurtosis substantially, the lognormal distribution cannot be 
rejected. For CS, the two distributions both provide statistically acceptable fits to the 
data. 
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Table 1. Test results for the form of the TCR and CS distributions. The p-values give the fraction of 
Monte Carlo experiments in which skewness and kurtosis were smaller than the values calculated from 
the actual data (see text). 

 TCR ln(TCR) CS ln(CS) 

Skewness 

(p-value) 

1.16 

(0.990) 

0.07 

(0.561) 

-0.02 

(0.486) 

-0.56 

(0.133) 

Kurtosis 

(p-value) 

2.57 

(0.994) 

0.84 

(0.925) 

-0.54 

(0.260) 

-0.49 

(0.308) 

If TCR and CS are to be presented by the same form of a distribution, the log-
normal distribution appears to be a statistically better candidate than the normal distri-
bution. The lognormal distribution also has the physically desirable property of giving 
zero probability for negative values of TCR and CS. On the other hand, the test results 
for TCR are radically affected by a single model (CCSR/NIES2), without which both 
the skewness and the kurtosis of the distribution would be negative. Thus, if there were 
a priori reason to exclude CCSR/NIES2 from the calculations, the conclusion on the 
relative merits of the two distributions would change. Moreover, it is naturally possible 
that the actual underlying distributions are neither normal nor lognormal, but rather of 
some other form. 

More generally, it is difficult to distinguish between different forms of the distri-
bution on the basis of small samples. We performed Monte Carlo simulations in which 
20-number random samples were drawn from the lognormal distribution estimated from 
the TCR data. About 85% of these samples were positively skewed, but the skewness 
exceeded the corresponding 95th percentile for the normal distribution in only 30% of 
the samples. The same fraction for 15-number CS samples was only 26%. Kurtosis was 
found to give a less powerful means to distinguish between the two types of distribu-
tions than skewness. 

The inferred 5th, 50th (median) and 95th percentiles of the TCR and CS probability 
distributions are given in Table 2. Although the previous analysis suggests a slight 
preference for the lognormal form, results for the normal distribution fit are also shown. 
The 5-95% uncertainty range for TCR is 1.1-2.5 °C, and that for CS 2.1-5.3 °C, when 
using the lognormal distribution. The corresponding numbers for the normal distribu-
tion are 1.0-2.4 °C and 2.0-5.0 °C. Thus, both the 5th and 95th percentiles are slightly 
lower for the normal than the lognormal distributions, whereas the medians are slightly 
higher. The median for CS (about 3.4 °C) is twice the value for TCR (1.7 °C), even 
though it should be noted that the two distributions have been derived using slightly 
different sets of models. The widely cited range (1.5-4.5 °C) and frequently given best 
estimate (2.5 °C) for CS are somewhat on the lower side of the model results. Finally, 
one may note that the normal distribution fit for TCR classifies CCSR/NIES2 as a much 
more extreme outlier (probability of larger warming 0.1%) than the lognormal fit 
(0.7%). 
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Table 2. Percentiles of TCR and CS, as derived from the fitted analytical probability distributions. In 
each table entry, the first value gives the best estimate and the next two (in parentheses) the 5-95% un-
certainty range derived from Monte Carlo simulations. 

 Percentile Normal distribution Lognormal distr. 

TCR 

 

5% 

Median 

95% 

0.97 (0.72-1.23) 

1.71 (1.55-1.87) 

2.44 (2.18-2.69) 

1.09 (0.95-1.27) 

1.66 (1.51-1.82) 

2.51 (2.17-2.89) 

CS 5% 

Median 

95% 

1.98 (1.39-2.59) 

3.47 (3.08-3.85) 

4.96 (4.34-5.54) 

2.11 (1.76-2.55) 

3.35 (2.97-3.76) 

5.31 (4.39-6.35) 

Being based on a limited number of model results, the derived probability distri-
butions suffer from sampling uncertainty. This source of uncertainty was estimated by 
first drawing a large number of artificial 15- and 20-model random samples from the 
best-fit normal or lognormal distributions, and by then repeating the distribution fitting 
for each of these samples. For the percentiles considered in Table 1, the sampling un-
certainty is larger than the differences between the normal and the lognormal distribu-
tions. The best-estimate 5th, 50th and 95th percentiles for the normal distribution are al-
ways within the 5-95% sampling range for the lognormal distribution, and vice versa. It 
is only in the extreme tails of the distribution (roughly, < 1% and > 99%) where the 
differences between the normal and the lognormal form begin to dominate over the 
sampling uncertainty (not shown). 

In the case of the lognormal fit, the sampling uncertainty is largest in the upper 
end of the distribution; note in particular the large (4.39-6.35 °C) uncertainty in the 95th 
percentile of CS. For the normal distribution fit, both the lower and upper ends suffer 
from larger sampling uncertainty than the middle of the distribution. 

4.  Comparison with other studies of climate sensitivity 

Due to its great importance, climate sensitivity (CS) has been a topic of intense 
research especially in the last few years. In addition to the simple method applied in 
this study, there are at least two more sophisticated alternatives for estimating this 
quantity. One of these is based on so-called perturbed-parameter model simulations and 
the other on instrumental observations of climate variability during the last century or 
proxy data of earlier climate variations. 

The differences in CS among climate models arise from inter-model differences 
in the parameterisation of sub-grid scale phenomena such as boundary layer turbulence, 
radiation transfer and (most importantly) cloud processes. However, it has been argued 
that the uncertainty associated with the parameterisation problem may not be captured 
properly by “unplanned” multi-model ensembles such as the one used in this study. To 
explore the issue in a more systematic manner, Murphy et al. (2004) and Stainforth et 
al. (2005) used perturbed-parameter ensembles, in which a large number of uncertain 
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model parameters were varied within what modelling experts consider as reasonable 
limits. Murphy et al. (2004) determined CS for 53 versions of the Hadley Centre model 
HadAM3, including the standard version of the model and 52 modified versions ob-
tained by changing one model parameter at a time. From the results of their perturbed-
parameter simulations they estimated the 5-95% uncertainty range of CS as 2.4-5.4 °C 
(to be compared with 2.0-5.0 °C or 2.1-5.3 °C in the present study). To obtain this esti-
mate they weighted the CS values from the individual model versions according to the 
ability of the various versions to simulate the present-day climate; the corresponding 
uncertainty range without the weighting was 1.9-5.3 °C. 

Stainforth et al. (2005) also perturbed the parameters of HadAM3 but, in contrast 
to Murphy et al. (2004), they changed several parameters at a time. Among the over 
400 model versions studied by them, CS varied from 1.9 °C to 11.5 °C, with 4.2% of 
the versions having sensitivity above 8 °C. Although one might expect the most sensi-
tive model versions to simulate the present climate poorly, Stainforth et al. (2005) 
found no evidence of this when studying the long-term mean climates in the various 
model versions. However, it is not yet known if this conclusion would hold after a more 
complete evaluation of the simulated climates, including higher-order climate statistics 
such as the amplitude of the simulated interannual variability. 

Both Murphy et al. (2004) and Stainforth et al. (2005) used the same model 
(HadAM3) as their starting point. If a similar exercise were repeated for other models 
with different standard-version sensitivities, this might result in an even wider range of 
CS estimates. 

A purely model-based assessment cannot tell the final truth of CS (or TCR) in the 
real world. Several investigators have therefore attempted to estimate CS from obser-
vations of temperature variability during the last 100-150 years or from proxy data of 
earlier variations. Apart from estimates of temperature variability, such studies require 
quantitative estimates of the external factors (usually in terms of radiative forcing) that 
have caused the temperature changes. In addition, simulations with simple climate 
models have been used in many of these studies to help the interpretation of the obser-
vations. Some of the derived CS estimates are given in Table 3. 

Table 3. Estimates of climate sensitivity (CS, the equilibrium global mean warming resulting from a 
doubling of CO2) based on either instrumental observations during the last 100-150 years (I) or on proxy 
data of earlier temperature variations (P). In studies 1, 2, 3 and 7, range refers to the derived 5-95% un-
certainty range. The uncertainty interval covered in the other studies has not been specified in probabil-
istic terms. 

 I or P Reference Range Best estimate 

1 I Andronova and Schlessinger (2000) 1.0-9.3 °C  2.0 °C 
2 I Forest et al. (2002) 1.4-7.7 °C  2.9 °C 
3 I Gregory et al. (2002) 1.6 °C - ∞ 6.1 °C  
4 I Harvey and Kaufmann (2002) 1.0– 3.0 °C 2.0 °C  
5 P Hoffert and Covey (1992) 1.4-3.2 °C 2.3 °C 
6 P Barron et al. (1995)  2.5-4.0 °C not given 
7 P Schneider von Deimling et al. (2004) 1.5-4.7 °C 2.1-3.6 °C 
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Without going to the details of methodology, which vary substantially across the 
various studies, we can make a few general observations. Studies based on temperature 
variations during the instrumental period tend to give highly skewed probability distri-
butions of CS. The lower bound of the derived uncertainty range is at 1.0-1.6 °C and 
the best estimate (median of the distribution) is with one exception at 2-3 °C. However, 
the upper bound is in most studies very high, with one exception at least 7.7 °C, and in 
the most extreme case (Gregory et al., 2002) even infinitely high climate sensitivity 
was found to be consistent with observations. The difficulties in determining an upper 
bound for CS are associated with the great uncertainty in the magnitude of anthropo-
genic aerosol forcing, which is thought to have opposed the warming driven by in-
creased greenhouse gas concentrations (Boucher and Haywood, 2001; Andreae et al., 
2005). If the negative aerosol forcing has cancelled a large fraction of the positive 
greenhouse gas forcing, then large climate sensitivity is required to explain the ob-
served warming. At the limit where the aerosol forcing is strong enough to make the net 
radiative forcing to approach zero, infinitely high CS is implied, although some of the 
assumptions in the calculations might break down at this limit. 

In Harvey and Kaufmann (2002), a much lower upper bound (3.0 °C) for CS was 
found than in other studies based on instrumental data. CS exceeding 3.0 °C was found 
inconsistent with the relatively modest cooling that followed the Mount Krakatau erup-
tion in 1883. However, this conclusion may be sensitive to errors in temperature obser-
vations in the 1880s and in the radiative forcing resulting from the Mount Krakatau 
eruption. 

Studies based on proxy data of earlier climate variations have generally focused 
either on the Last Glacial Maximum (about 21 thousand years ago) or on the Creta-
ceous warm period (about 100 million years ago), or both. There are a number of com-
plications when inferring CS from such distant climate variations. For example, the 
studies generally treat changes in continental ice sheets and their effect on the planetary 
energy balance as part of the external forcing, although they are in reality a feedback 
from changing climate. This is justified by the fact that the ice sheet feedback is too 
slow to be important in the period (a few hundreds years) usually considered to be of 
greatest interest in the context of current anthropogenic climate change. Furthermore, 
many although not all (Schneider von Deimling et al. (2004) is an exception) of the pre-
instrumental studies have implicitly assumed that CS is independent of the basic state 
of the global climate. If this is not the case, as has been suggested by some model 
simulations (e.g., Stouffer and Manabe, 2003), then studies based on periods with very 
different climate conditions may give biased estimates for the sensitivity of the present-
day climate system. 

The CS estimates from the pre-instrumental studies are broadly comparable with 
the estimates based on instrumental data, but the uncertainty ranges tend to be narrower 
(lower half of Table 3). In particular, estimates of temperature variability in the pre-in-
strumental past do not appear to support the very high upper bound of CS found in 
many of the instrumental studies. However, this conclusion should be treated with some 
caution because the uncertainty analysis in the pre-instrumental studies has been less 
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complete than that in the instrumental studies (e.g., regarding uncertainties in radiative 
forcing). 

In conclusion, our model-based 5-95% uncertainty interval for CS (approximately 
2.1-5.3 °C) is more or less consistent with the estimates obtained from other methods, 
except for the fact that some of these other methods suggest a substantially higher upper 
bound for the uncertainty range. 

5. Conclusions 

Analytical probability distributions of the transient climate response (TCR) and 
equilibrium climate sensitivity (CS) caused by a doubling of CO2 have been derived 
from available model results, using the assumption that all models provide equally 
likely projections of climate change. The main findings are listed below. 

• For the 20 CMIP2 models, the derived median TCR is about 1.7 °C. The 
best-estimate 5-95% uncertainty range based on a normal distribution is 1.0-
2.4 °C and that based on a lognormal distribution 1.1-2.5 °C. 

• For the 15 equilibrium doubled CO2 simulations, the median CS is about 
3.4 °C. The best-estimate 5-95% uncertainty range based on a normal distri-
bution is 2.0-5.0 °C and that based on a lognormal distribution 2.1-5.3 °C. 

• Limited sample size makes it hard to distinguish between different candidates 
for the form of the distributions. In the case of TCR, the lognormal distribu-
tion fits the data better than the normal distribution, but this conclusion is 
critically dependent on one extreme model. 

• Limited sample size also causes uncertainty in specifying the parameters that 
determine the location (mean or median) and the width (standard deviation) 
of the distribution. For estimating the 5-95% ranges of TCR and CS, this is a 
larger uncertainty than the differences between the normal and the lognormal 
distribution. 

• Our purely model-based 5-95% uncertainty range of CS is in reasonable 
agreement with estimates based on instrumental observations and proxy data 
of pre-instrumental climate variability. 
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Appendix. Equations 

Let us denote the simulated global mean temperature changes in a sample of N 
different models as xi, 1 ≤ i ≤ N. The mean (m), standard deviation (s), skewness (skew) 
and kurtosis (kurt) of the sample are calculated from 
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If the N model results are a random sample of some underlying probability distri-
bution, the unbiased estimate for the variance of the distribution is 

22

1
s

N
N
−

=σ  (A5) 

The best-estimate normal distribution fit to the sample gives the probability density 
function 
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The median of this distribution is m, and the 5th and 95th percentiles are m ± 1.6449σ. 
Similarly, the density function for the two-parameter lognormal distribution is obtained 
from 
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where mLog and σLog are estimated by applying (A1), (A2) and (A5) to the natural loga-
rithm of the temperature change. The median of the distribution is exp(mLog), and the 5th 
and 95th percentiles are exp(mLog ± 1.6449σLog). 
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