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Abstract 

We have continued the investigation of generalized geodynamic McKenzie’s model of rifting 
which was not developed exhaustively. Filling this want, we have examined the rift basin and heat flow 
evolution under different regimes of spreading. Within the mathematical simulation, three model 
versions of finite extension of the lithosphere were studied and compared: instantaneous, accelerated 
and with a constant rate. In case of the lithosphere extending with an exponential acceleration, the 
solution was obtained through confluent hypergeometrical functions; for the case of the constant-rate 
extension the solution was obtained by the factorizing method. Under the same initial parameter values 
and the same spreading stage duration, the subsidence dynamics appeared to be manifested more 
intensely at the end of the stage, in the case of accelerated lithosphere extension, and at the beginning, - 
in the case of the constant rate extension. The deviations of results were diminished with decreasing 
duration of the spreading stage. Beyond this period, the solutions for these two variants approached the 
solution for the simplified version of instantaneous extension. The same may be concluded for the 
evolution of heat flow values. As follows from the model calculations, slower spreading rate led to 
substantial deviations of the subsidence dynamics and evolution of heat flow. However, inasmuch as the 
real spreading rates were probably no less than 0.1 cm/yr, the original simple McKenzie’s (1978) 
version of instantaneous finite extension of the lithosphere may be used for rough but sufficiently correct 
estimates. The reason is that after the spreading stage, the long subsidence of trough floor and heat flow 
evolution proceeded independently of the extension mode during the initial period. The applicability of 
model versions is confirmed by the close agreement between the simulation results and the observed 
dynamics of tectonic subsidence inferred from the structure of sedimentary sequences in well-studied rift 
basins. 
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1. Introduction 

Modern dynamic models of rifting processes combine two main mechanisms: 
lithospheric extension and thermal contraction. The founding ideas for lithospheric 
extension go back to the work of Vening Meinesz (1950), Artemjev and Artyushkov 
(1971),  Bott  (1971),  Fuchs  (1974)  and  Whiteman  et  al.  (1975),  while  the  role of 

Published by the Geophysical Society of Finland, Helsinki 



V.S. Sheplev and V.V. Reverdatto 64

thermal contraction in respect to the lithosphere state was emphasized, for example, by 
Sleep (1971), Sleep and Snell (1976), Haxby et al. (1976) and Parsons and Sclater 
(1977). A generalized geodynamical model for lithospheric extension involving rifting 
was developed by D. McKenzie (1978). This model involves lithospheric extension and 
thinning, with ascent of hot asthenosphere followed by restoration of isostatic balance, 
posterior cooling and thermal contraction of the upwelled asthenosphere. As a 
consequence of these processes associated graben-like basins and troughs are formed 
and filled with compacting sediments. 

Suggested in the year 1978 by McKenzie a simple model with rift basin 
generation was based on “instantaneous” finite extention (stretching) of a double-layer 
lithosphere. Later, Jarvis and McKenzie (1980) modified the model by including the 
duration parameter of finite extension of the lithosphere. Here, it was assumed that 
lithospheric extension accelerated exponentially and then stopped instantaneously after 
attainment of finite stretching. A third version of this model involving finite extension 
at a constant rate is proposed and examined in this paper. These three model versions as 
a matter of fact exhaust possible principal cases of one-act dynamics of rift spreading if 
the complications connected with their combinations are not considered. 

2. The model 

The relation between rate of extension - v2 and that of decrease in lithospheric 
thickness - v1 can be represented in the following way. Let us assume that a is the initial 
thickness of the lithospheric plate, b - its length, and t  is time. 
Then, 

v da dt1 = / ,   (1) 

v db dt2 = /  . (2) 

Balance of the matter is: 

b v a v⋅ = ⋅1 2   (3) 

If v1 is constant, then  

db dt b v a

t b b

/ /

:

= ⋅

= =

1

00
  (4) 

On integration: 
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Integrating eq. (2) when v2 is constant and substituting for eq. (3), gives the 
conservation condition: 

( )v b v t a v1 2 2⋅ + ⋅ = ⋅    (6) 

The equation of heat transfer from the asthenosphere into lithosphere extending at a 
constant rate is written in the form (McKenzie 1978, Jarvis and McKenzie 1980): 

( ) ( )∂ ∂ ∂ ∂ ∂ ∂T t k T z v t z a T z/ / / /= ⋅ − ⋅ − ⋅2 2
1 1   ,  (7) 

with the following initial and boundary conditions: 

( )t T T z a= = ⋅ −0 11: / , (8) 

t z T T> = =0 0 1, :  , (9) 

z a T= =: 0   , (10) 

where z- the vertical coordinate, T(z) - temperature of the lithosphere, T1 - temperature 
of the asthenosphere ( upper mantle ), k -  thermal diffusivity coefficient. 

Let denote 

( ) ( ) ( )x z a T T k t a G v a b k G G

G k t a

= − = = ⋅ = ⋅ ⋅ = + ⋅

= + ⋅ ⋅

⋅1 1

1

1
2

2
2

2

/ , / , / , / , / ,

/ ,

/ / /

/

θ τ ν τ τ

β Δ
 (11) 

here, G’ - dimensionless rate of spreading,   β - coefficient of spreading. 
Then the eqs. (7-10) can be rearranged as follows: 

( )∂θ ∂τ ∂ θ ∂ ν τ ∂θ ∂/ / /= + ⋅ ⋅2 2x x x ,  (12) 

( )τ θ= =0: x x   , (13) 

τ θ> = =0 0 0, ;x  , (14) 

x = =1 1: θ    (15) 
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Solution of the eq. (12) under the conditions (eqs. 13-15) was obtained by the finite 
difference method with factorizing of 3-diagonal matrix using the value of ν(τ) from eq. 
(11). 

In the case of lithospheric extension occuring at an exponential rate with 
acceleration, when ν(τ)=constant, a solution was derived as a series on the eigen 
functions of the Sturm-Liouville problem which were found by numerical integration of 
the boundary value problem (Jarvis and McKenzie 1980). However, the solution may 
also be obtained through confluent hypergeometrical functions. In the manner of 
McKenzie (1978) and Jarvis and McKenzie (1980) we sought a solution of eqs. (11-15) 
as sum: 

( ) ( ) ( )θ τ θ θ τ, ,x x xc= +   (16) 

where 

( )
( )

θ α
α

α νc
erf x
erf

= =, / 2  (17) 

is stationary solution satisfying the non-uniform boundary conditions; θ  is the solution 
of the problem: 

∂θ ∂τ ∂ θ ∂ α ∂θ ∂/ / /= + ⋅ ⋅ ⋅2 2 22x x x   ,    18) 

( )τ θ θ= = −0: x xc  , (19) 

τ θ> = =0 0 0, :x  , (20) 

x = =1 0:θ   (21) 

Representing θ  as product θ =T(τ) y(x), we separate variables in eq. (18) and obtain the 
solution for T(τ): 

( ) ( )T nτ α ν τ= −exp 2 2 ,   (22) 

and the Hermite equation for the function y(x): 

y x y yk
/ / /+ ⋅ ⋅ + ⋅2 22 2α α ν = 0  , (23) 

with the boundary conditions: 

x y= =0 0:  (24) 

x y= =1 0:  . (25) 
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The solutions of eq. (23) are the Hermite functions orthogonal on [0 - 1] with a weight 
of exp(α2x2). The boundary condition (eq. 24) is satisfied by some linear combination 
of these functions which is expressed through the confluent hypergeometric function 
Φ(a,b,x): 

y x x= ⋅ + −⎛
⎝⎜

⎞
⎠⎟Φ 1

2
3
2

2 2ν α, , . (26) 

With the help of the Kummer formula (Abramowitz and Stegun, 1964) eq. (26) can be 
transformed into: 

( )y x x xk= ⋅ − ⋅ −⎛
⎝⎜

⎞
⎠⎟exp , ,α ν α2 2 2 21

2
3
2

Φ . (27)  

Applying boundary conditions (eq. 25) we find the equation for eigen values νk: 

Φ 1
2

3
2

02+ −⎛
⎝⎜

⎞
⎠⎟ =ν αk , ,   (28) 

or 

Φ 1
2

3
2

02−⎛
⎝⎜

⎞
⎠⎟ =ν αk , ,  . (29) 

The norm of eigen functions is determined by the quadrature: 

( )d x x x dxk
k2 2 2 2 2 2

0

1
1

2
3
2

= − ⋅ −⎛
⎝⎜

⎞
⎠⎟ ⋅∫ exp , ,α ν αΦ .  (30) 

The expansion coefficients of the initial condition with respect to eigen functions: 

( )
( )

a
d

x erf x
erf

x dxk
k

k= −
⎡

⎣
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⎤

⎦
⎥ ⋅ −⎛

⎝⎜
⎞
⎠⎟ ⋅∫

1 1
2

3
2

0

1
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By gathering obtained expressions we come to the solution (eqs. 12-15) in the form: 

( ) ( )
( ) ( ) ( )θ τ α
α

α α ν τ ν α, exp exp , ,x erf x
erf

x x a xk k
k

k= + ⋅ − − ⋅ −⎛
⎝⎜

⎞
⎠⎟

=

∞

∑2 2 2

1

2 22 1
2

3
2

Φ . (32) 

The heat flow on the earth’s surface can be calculated by using of eq. (32): 

( ) ( )J x
erf

ak k
k

= =
⋅

+ −
=

∞

∑∂θ ∂ α
π α

α ν τ/ exp2 2 2

1
  . (33) 

Several first eigen functions and eigen values are given in Fig. 1. 
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Fig. 1. The first eigen functions in equation (26): 
 a) G/ = 10;  the first eigen values: 2.128, 5.245, 10.20, 41.32; 
 b) G/ = 100; the first eigen values: 2.0, 4.0, 6.0, 8.0. 

Table 1. Values of parameters used for the calculations. 

a=125 km 
ρ0=3.33 g/cm3 
ρc=2.8 g/cm3 
ρw=1.0 g/cm3 
K=3.3 10-5  1/ 0 C 
k=0.008 cm2/s 
T1=13330C 

There are some difficulties when calculating the function Φ(a,b,x) in the case of 
large values of parameters and/or arguments. Let us take occasion the parameter b is 
small in this instance. Then the function Φ with small value of argument is calculated 
by the expansion into series: 

( ) ( )
( )

Φ a b x
a x
b k

k
k

kk
, ,

!
=

=

∞

∑
0

 (34) 

or by using a asymptotic formula in the case of large argument value: 
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( )
( )
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If the value of parameter a is large, the recurrent formula is applied: 

( ) ( ) ( ) ( ) ( )b a a b x a b x a b x a a b x− ⋅ − + − + ⋅ − ⋅ + =Φ Φ Φ1 2 1 0, , , , , ,  (36) 

Since the parameter a is negatve in eq. (27) we need to add a sufficiently large number 
to the value a so that the sum a n a+ =  falls into inteval [ 0 - 1 ]. Calculating the values 
of function ( )Φ a b x, ,  and ( )Φ a b x−1, ,  by eqs. (34 or 35) and using the recurrent eq. 

(36) (n-1) times we can find an unknown quantity of function ( )Φ a b x, , . 

The lithosphere plate subsidence was calculated taking into account: 1) 
lithospheric extension and thinning during stretching stage and isostatic compensation 
during asthenosphere ascent, and 2) thermal contraction during cooling. The 
calculations were performed at each iteration using the factual present-time temperature 
profiles in the lithosphere. Appropriate formulae used for calculations was deduced by 
McKenzie (1978) and Jarvis and McKenzie (1980). The subsidence depth, S(τ), was 
computed at each iteration with allowance for the weitht of the lithosphere which 
included the crust and uplifted part of the asthenosphere. Approximately, it can be 
expressed by: 

( ) ( ) ( )S P P
K T w

τ τ
ρ ρ

≈ −
− ⋅ −

0
10 1( )

 (37)  

where P(τ) is the lithosphere weight at the moment τ, P(0) - initial weight of the 
lithosphere, ρ(0) - density of the asthenosphere, T1 - temperature of the asthenosphere, 
ρ(w) - density of water, K - coefficient of thermal expantion. In the limit of τ→∞, the 
temperature profile becomes linear and the subsidence depth approaches the value 
(Jarvis and McKenzie 1980): 

( ) ( ) ( )( )S
a

C C K T
K T

c

w

∞ =
⋅ − ⋅ − ⋅ − ⋅ ⋅ ⋅ +

− ⋅ −
1 1 1 1 1 1 2

1
0 1

1 0

ρ ρ β β
ρ ρ

/ / / /
/

  (38) 

where C - the part of lithosphere thickeness that was occupied by the crust at the initial 
moment, ρc - density of the crust. The dimensionless heat flow was calculated 
numerically with the the help of eq.(12). 

3. Results for different rates of lithospheric extension 

Some interesting results of the model calculations involving subsidence dynamics 
and heat flow evolution with different values of parameters β and G/ are shown in Figs. 
2-4. Calculations for “instantaneous” finite extension of the lithospheric plate 
(McKenzie 1978) are also performed for comparison. As it turned out for the same of 
initial parameters and period of spreading (extension) duration, the subsidence 
dynamics for the accelerating and constant-rate solutions are closely similar. But it 
appears to be manifested more intensely at the end of spreading period, in the case of 
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the accelerated lithospheric extension (Jarvis and McKenzie 1980), and at the 
beginning, - in the case of the constant-rate extension. The divergence in subsidence 
dynamics rises with the increasing duration (Fig. 4a) and is diminished with decreasing 
one (Fig. 2a). The subsidence values are markedly lower for some (Figs. 2a and 3a) or 
many (Fig. 4a) million years of spreading period than in the case of a instantaneous 
extension. After starting period the subsidence dynamics are the same for all these 
solutions approaching the instantaneous case. The same relationships also apply to the 
thermal flux evolution associated with the extension and beyond this period (Figs. 2b, 
3b, 4b). 

At the extension rate of about 0.5 cm/yr, the rifts of 25 km or 67.5 km wide could 
be formed for 5 or 13.5 m.y., respectively. This is close to the upper and lower limits of 
known graben widths (for example, Bott 1976). The sides of rift troughs probably 
pulled apart at an average rate of 0.5 cm/yr in the Danish basin (Vejbaek 1989), and at a 
rate of 0.2 - 0.4 cm/yr in the Pannonian basin (Jarvis and McKenzie 1978). As appears 
from the model calculations, slower spreading entails considerable differences in 
subsidence dynamics and heat flow evolution (see Fig. 4). However, inasmuch as a real 
rate of spreading was no less than 0.1 cm/yr ( for example, (Le Pichon 1968), the first 
version of McKenzie’s (1978) model assuming “instantaneous” extension of the 
lithosphere plate may be successfully used for rough estimates. It is conditioned by the 
fact that after stretching stage the subsidence of rift basement and the heat flow 
evolution proceeded independently of the extension mode during the initial period. The 
effectiveness of “the instantaneous stretching model to be used to calculate the 
subsidenc history” had been noticed before by Jarvis and McKenzie (1980, p. 50). That 
circumstance was explained by sufficiently short extension period in the real rift basins. 
We corroborate this conclusion not only by means of aforecited theoretical 
computations but also the close agreement between the model calculation results and 
the observed dynamics of tectonic subsidence inferred from the structure of 
sedimentary sequences in well-studed rift basins. The data on sedimentary successions 
and their ages served as a source of independent information on the dynamics of crust 
subsidence (Royden and Keen 1980, Guidish et al. 1985, Ungerer et al. 1990). With the 
help of special sofware package (Friedinger 1988, Friedinger et al. 1991), the 
comparison of simulated and observed evolution of several rift basins was carried out. 
The software package performs the follows: the simulation of dynamics of basin bottom 
subsidence on the basis of McKenzie’s model taking into account an available 
geophisical information and the numerical modelling of the lithosphere sinking and 
sediment accumulation on the ground of stratigraphic (including thicknesses and ages 
of sediment layers) and lithologic data for sedimentary sequences using the 
backstripping method (Royden and Keen 1980, Sclater and Christie 1980, Guidish et al. 
1985, Ungerer et al. 1990). The comparison of these two computation results allows to 
estimate the divergence between them. It is performed by using the least square method 
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Fig. 2. Subsidence depth, “a”, (S, km), and reduced value of surface heat flow, “ b”, (J/J0), for different 
regimes of finite extension of the lithosphere: 1 - instantaneous (McKenzie 1978), 2 - accelerated (Javris 
& McKenzie 1980) and 3 - constant-rate (this paper). It was taken: β=1.5, G/=50, a=125 km, t - in 
millions of years. 
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Fig. 3. The same, for β=3, G/=50. 
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Fig. 4. The same, for β=3, G/=2. 
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to determine the difference between observed and simulated positions of the basement 
in sediment stripped basin (Reverdatto et al. 1997). This comparison demonstrates an 
excellent coinsidence in the cases of such well-studied rift basins as the Central North 
Sea graben (Friedinger 1988, Sclater and Christie 1980), the Danish basin (Vejbaek 
1989, Reverdatto et al. 1993), the Dnieper-Donets aulacogen (Reverdatto et al. 1993, 
Stephenson et al. 1993, Chekunov et al. 1992), etc.: the difference model/observation 
does not exceed one or some per cent. We are going to consider this question in the 
special paper. 

4. Conclusion 

To continue the investigation of McKenzie’s model the evolution of rift basins 
and variations of heat flow were studied by us with respect to the following cases: 1) 
when finite extension of the lithosphere happened instantly, 2) when lithosphere was 
extended with acceleration, and 3) when spreading rate was constant. It was found with 
the same values of initial parameters and extension duration the subsidence dynamics 
concerning two latter versions differed insignifically. The subsidence dynamics during 
the period after stretching, i.e. in the course of cooling and thermic contraction, 
approximated very much to the calculation results obtained when finite instantaneous 
extending the lithosphere. A similar conclusion can be drawn relative to heat flow 
evolution. Hence, it follows that McKenzie’s (1978) model involving the instantaneous 
finite expansion of the lithosphere is valid for rough but sufficiently correct estimates of 
rift subsidence and heat flow evolution. The good agreement between the model results 
and dynamics of tectonic subsudence inferred from the observed structure of 
sedimentary section with layers of known ages points to the evident plausibility and 
reality of McKenzie’s rifting model. 
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