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Abstract

Studies of geomagnetic disturbances and connected electric fields, ie. of
electromagnetic induction in the earth, yield information on the structure
of the earth and on the ionospheric and magnetospheric current systems.
In this paper three theoretical models of the primary field of the induc-
tion are formulated:

1. a harmonic plane wave propagating vertically downwards

2. the field caused by an infinitely long horizontal straight line current

oscillating harmonically in time

3. the field caused by a similar line current which, in addition, has a

longitudinal harmonic space dependence, implying an accumulation
of charge on the line.

The earth is assumed to be an infinite half-space with a flat surface.
The electromagnetic properties of the earth are assumed to be laterally
constant and piecewise constant in the vertical direction. Formal exten-
sions to arbitrary vertical variations are included and so, too, in the third
model, are lateral variations in the transverse horizontal direction. In the
mathematical calculations, however, it proved necessary, to assume that
the lateral variation vanishes at the earth’s surface.

Formulae for the total disturbance field on the earth’s surface are de-
rived, basing rigorously on Maxwell’s equations and on electromagnetic
boundary conditions. The final formulae for the last two models are com-
plicated integrals over a horizontal wave number.

The first two models are included in order to give complete and non-
approximative treatments of them. Comments on previous publications
dealing with the first two models are presented, although the main results
derived earlier are good approximations of rigorous formulae.

The third model, whose treatment is similar to the second, is an ex-
tension to the theory of induction published earlier. The longitudinal
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space dependence implies the existence of non-zero electric-field compo-
nents perpendicular to the current, and of a parallel non-zero magnetic-
field component. The possibility of assigning longitudinal attenuation to
the primary source is also investigated and shown to be unacceptable.

The general and rigorous treatment in this work may make it appli-
cable also to other problems of electromagnetism.

1. Introduction

Time variations of the electric current system in the earth’s ionosphere and
magnetosphere are caused mainly by the sun in complex ways that are not yet
fully understood. These variations lead to fluctuations in the earth’s magnetic field
(the geomagnetic field). Irregular fluctuations are generally known as geomagnetic
disturbances, and the most violent of them are called geomagnetic storms.

According to basic electromagnetic theory, an electric field is inevitably con-
nected with fluctuations in the geomagnetic field (Faraday’s law of induction).
The magnetic variations and the electric field are further affected by secondary
currents and charges induced in the earth, in addition to their primary source cur-
rents and charges in the ionosphere and in the magnetosphere. According to
HuLTtovist, 1973, about 60 % of the horizontal disturbance component of the
geomagnetic field at the earth’s surface is caused by primary sources, and 40 %
by secondary sources. The whole phenomenon can be called »electromagnetic in-
duction in the earth». The term »geomagnetic induction» is also used. The study
of geomagnetic variations and associated electric fields is known as magnetotel-
lurics.

The main geomagnetic field, which originates almost entirely inside the earth,
and upon which the fluctuations are superimposed, is approximately a dipole field,
with a magnitude in Finland of about 50,000 nT. The largest time variations in
the geomagnetic field are a few thousand nT. A typical changing time of the main
field is several years, so it can be considered static, and without any electric field.
The main geomagnetic field can be totally ignored in the treatment of electro-
magnetic induction in the earth. Thus »field» in this paper always refers to a varia-
tion in the geomagnetic field or to the connected electric field, or both. Real fluc-
tuations in the geomagnetic field are discussed from the standpoint of magneto-
tellurics by KAuFMAN and KELLER, 1981, pp. 1-38.

If all the sources of the electromagnetic field situated outside the earth and
the electromagnetic properties within the earth were known, the whole phenom-
enon could in principle be solved theoretically using Maxwell’s equations and
boundary conditions. But the primary sources and the structure of the earth are
not exactly known. In fact they are so complicated that precise calculations would
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be impossible in practice. So only approximative and simplified models can be
used in theoretical treatments. The fitting of the observed electromagnetic field
to such models gives information on the ionospheric and magnetospheric currents
and charges, and on the structure of the earth.

This purely theoretical work deals with three models for the primary field
caused by sources in the earth’s ionosphere and magnetosphere. In Chapter 2 the
field is a harmonic plane wave propagating vertically downwards, and correspond-
ing to an infinite horizontal current sheet as the primary source. The primary
field in Chapter 3 is created by an infinitely long straight line current oscillating
harmenically in time, and situated horizontally above the earth’s surface. In Chap-
ter 4 a sinusoidal space dependence along the line is added to the source in Chap-
ter 3; i.e. the current has the form of a wave propagating along the line. The
current in Chapter 4 is accompanied by a primary charge.

The models presented in Chapters 2 and 3 have been discussed in the literature.
For Chapter 2 CAGNIARD, 1953, WarT, 1962, and KAUFMAN and KELLER, 1981,
pp. 3974, can be referred to. The induction caused by the primary source in
Chapter 3 has been treated by PrICE, 1950, pp. 398—404, LAw and FANNIN,
1961, ALBERTSON and VAN BAELEN, 1970, KELLER and FRISCHKNECHT, 1970,
pp. 306-307, PARK, 1973 and 1974, and KAUFMAN and KELLER, 1981, pp.
113—126. Chapters 2 and 3 are nevertheless included in this paper to give a com-
plete and thorough treatment of these models as a background to Chapter 4. The
analyses in Chapters 2 and 3 are based directly on classical electromagnetic theory
and should therefore be readable and understandable without the above-mentioned
references, though comments on these earlier publications are included. The present
discussion also contains formulae derived rigorously from Maxwell’s equations and
from the electromagnetic boundary conditions. Hence displacement currents are
not neglected though, owing to the low frequencies, such neglect would evidently
be acceptable in dealing with the theory of geomagnetic induction in the earth.
Thus the applicability of this work is not necessarily confined to electromagnetic
induction in the earth.

The model in Chapter 4 is a generalization of that presented in Chapter 3, and
has not been discussed earlier in the literature. Chapter 4 likewise involves a rigorous
application of Maxwell’s equations and boundary conditions.

In this work the earth is assumed to be a half-space, making the earth’s surface
an infinite plane. The air is initially regarded as electromagnetically free space with
vacuum permittivity and permeability and zero conductivity. To simplify the
mathematical treatment, however, a very small positive conductivity is assigned to
the air in Chapters 3 and 4.



4 Risto Pirjola

The first model for the structure of the earth discussed in Chapters 2, 3 and 4
consists of horizontal layers, thus resembling practical situations. Each layer has
a constant conductivity, a constant permittivity and a constant permeability, all
of which are scalars implying isotropy. Later, generalizations are made in which
the parameters, though still scalars, are allowed to be arbitrary functions of depth.
In Chapter 4 lateral variations in the transverse horizontal direction are also for-
mally involved, though in the course of the treatment this horizontal dependence
is assumed to vanish totally at the earth’s surface so as to make the mathematical
treatment much easier. The special case of a homogeneous earth is discussed sep-
arately in Chapters 2, 3 and 4.

The validity of the treatments in these chapters is discussed in Chapter 5.

The horizontal-layers model is included in the treatment of arbitrary vertical
variations. So it would seem logical to deal first, in each chapter, with the most
general model and then discuss the horizontally layered earth as a special case.
But the latter model permits an explicit solution in terms of the number, thick-
nesses and electromagnetic parameters of the layers of the earth. On the other
hand, no explicit solution is possible in the case of arbitrary variations. By changing
the parameters describing the horizontally layered model, which may have any
values, a broad variety of earth structures can be obtained. These considerations
dictate the order of treatment.

Lateral variations of the structure of the earth, which always complicate the
solution of geomagnetic induction problems, are discussed by JonEs and PrICE,
1971, Hosss, 1975, and KAuFmaN and KELLER, 1981, pp. 175—-404, among
others. '

The principle of treatment is the same in each of Chapters 2, 3 and 4. The ex-
pressions for the primary electromagnetic field are given first. The secondary field
created in the air by the earth and the field inside the earth are then calculated
with Maxwell’s differential equations, and boundary conditions are used to connect
the unknown integration constants to each other and to the known quantities.
The aim in each chapter is to derive formulae for the disturbance field on the
earth’s surface. This field, which is the sum of the primary and the secondary
electromagnetic fields, corresponds to actual observations.

It could be thought that the secondary field produced by the earth might in-
fluence the primary sources, thus altering the primary field. But it is assumed
throughout this work that the primary fields are the actual fields originating out-
side the earth, so they already include all possible effects of the secondary fields.
Ducruix et al, 1977, make a similar assumption in their paper on geomagnetic
induction. Even without such an assumption it is clear that the effect of a primary
field on its own sources is already included in the expressions of the primary
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sources and field. If the air is not taken to be electromagnetically free space, the
primary and secondary fields produce additional induced sources in the air. In this
wotk the effect of the former, but not that of the latter, is contained in the
primary field. _

It is assumed throughout that the functions are sufficiently well-behaved to
permit the mathematical procedures. Often in this paper unknown quantities
are solved from sets of linear equations. In these cases it is always assumed that
a single-valued finite solution exists, which mathematically means to say that the
determinant of the set of equations differs from zero.

Certain other mathematical subjects and formulae utilized are presented in
Appendix A. Elements of classical electromaghetic theory upon which the treat-
ments in Chapters 2, 3 and 4 are based are given in Appendix B. The matters
discussed in Appendices A and B can also be found in the literature. In this paper,
however, they are presented to make Chapters 2, 3 and 4 easier to read. Appendix
C contains a discussion of cylindrical electromagnetic fields, which is necessary for
Chapter 4. Surface waves, a topic related to Chapter 4, are also discussed briefly
in Appendix C.

As stated above, the study of electromagnetic induction in the earth is useful
for investigating the structure of the earth and phenomena in the ionosphere and
magnetosphere. It also has another practical application: induction in earthed con-
ductors. The electric field associated with geomagnetic disturbances appears as
potential differences between separate points on the earth’s surface. Such a voltage
creates an electric current in any conductor that is earthed at different points. In
oil and gas pipelines, for example, such currents may cause corrosion problems
(CampPBELL, 1978 and 1980). In power transmission lines they cause saturation
of transformers, which may lead to disturbances in the operation of power trans-
mission systems and can even damage the transformers (ALBERTSON ef al, 1973,
TaxaLa, 1979 and 1980, PirioLa, 1980). )

In the theoretical calculation of currents induced in conductors, potential dif-
ferences between the earthing points if there was no conductor have to be calcu-
lated. For this purpose expressions of potential differences between two arbitrary
points on the earth’s surface are also presented in this paper. As the magnetic
field is not time-independent, a potential difference is not single-valued, but depends
on the path along which the electric field is integrated. Obviously it should always
be integrated along the conductor. In this work, however, all the potential differ-
ences are calculated along the shortest path on the earth’s surface, ie. a straight
line. The use of these potential differences, say in calculations on straight power
lines, causes an error which is clearly negligible, because the height of power lines
is very small compared to the wavelength in free space and to the depth of penetra-
tion in the earth associated with significant frequencies in geomagnetic variations.
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2. Induction in the case of a plane wave primary field
2.1. Description of the model and the expressions of the primary field

We shall describe the earth as a half-space. Thus the earth’s surface is an infi-
nite plane. The other half-space, the air, is regarded as electromagnetically free
space having the permittivity e, the permeability Mo and ze1o conductivity.
Electromagnetically, the air in the vicinity of the earth’s surface behaves almost
as free space. Assume further that the primary electromagnetic field originating
from ionospheric and magnetospheric sources is a plane wave having a harmonic
time-dependence ¢'“? with w > 0 and propagating downwards perpendicularly to
the earth’s surface. Such a field is created by an infinite-horizontal current sheet
above the earth.

Using the standard Cartesian coordinate system, where the xy-plane coincides
with the earth’s surface and the x-axis points northwards, the y-axis eastwards
and the z-axis downwards, normally used in geomagnetic considerations, the
primary fields have, according to Section B.6, the expressions

E; =Ej ¢'@=ko?) (2.1)
and

B, = By e'wt—ko?) (22)
where

Ey = By, + By 8, = cByx €, , (2.3)
and

By =By, ¢, +Bj,¢,. (2.4)

Here k is the real and positive propagation constant of free space given by for-
mula (B.91), ¢ is the speed of light in free space and the unit vectors €, é\y and
é\z point in the directions of the positive x-, y- and z-axes, respectively. (See also

" the ‘end of Section B.9.)

2.2. Induction in a horizontally layered earth

Assumé that the earth, ie. the lower half-space, can be divided into horizontal
layers each of which has constant conductivity 0; (#°°), constant permittivity €
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Fig. 1. Model of the earth consisting of horizontal layers. This model is used in Chapters 2,
3 and 4.

and constant permeability y; (Fig. 1). The thicknesses of the layers are i,,h,,....7,_;
and Az, (= ).

Because of symmetry it is natural that the only space coordinate upon which
the electromagnetic fields appearing in this problem depend is z. Due to the bound-
ary conditions (Section B.7) it also seems natural to assume that all fields are
harmonic with the same angular frequency w (see FEYNMAN ef al,, 1964, p.
33—8), i.e. the time-dependence is expressed by e/*% The earth causes a secondary
field in the air, which propagates upwards and may be called reflected. This elec-
tromagnetic field is

Ef — E(; ei(wt+koz) (2.5)
and
B = —6 A(wttkg2) (2.6)

where
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E,=E,.e, +Ej e, =—cByxe, 2.7
and
By =Bg.e, B8, (2.8)

(see Sections B.6 and B.9).

The electromagnetic field appearing within the earth is also obtained from the
discussions in Section B.6 and at the end of B.9. In all but the lowest layer the
field consists of two parts, one propagating downwards, the other propagating up-
wards. Thus in the j* layer (j=1,...,n—1)

E - E;_l-ei(wt—k]-z) 4 E-j-ei(wt+ka) (2.9)
and
B = B/l 4 prel(wriye) (2.10)

where k; is the propagation constant of the 7™ layer given by the formulae (B.41)
and (B.42) and

_ A A _bﬁ—-‘* A

E;*—E]T;ex+b’]"yey—ij]. xe,, 2.11)
Pt _ p+ A + A

B =B.6 +B8,, (2.12)
E =E, 6 +E 6 =—2F xe 2.13
i = Bl Ty = 2 j X € (2.13)
and

B} =B, +B,C,. (2.14)

It is clear that the electromagnetic field in the lowest layer consists only of a
downward propagating wave, which for o, # 0 is also attenuated downwards, be-
cause the layer continues homogeneously to infinity (see e.g. STRATTON, 1941, p.
511). The upward propagating wave would grow to infinity as z increases, if g,
differs from zero. Thus in the lowest layer

E = E' ¢'@t=kn2) (2.15)

and
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B = E;ei(wt——knz) . (2.16)

k, is the propagation constant of the lowest layer, and

A w =
Ey=E e +E e, =k—B;?<eZ (2.17)
n
and
B} =B, +B e, (2.18)

The present treatment makes all charges vanish in the earth including the
boundary surfaces, as of course, also those in the air (see Sections B.5, B.6 and
B.7). The behaviour of the true charge density inside a conductor (the earth) has
been discussed a little more generally by PRicE, 1967, p. 265, and by NEVANLINNA
and WELLING, 1975, pp. 6—7.

According to Section B.7 the tangential components of the electric field inten-
sity £ and of the magnetic field intensity A will be continuous at the planes z = 0,
z=hy,z=h; +hy,..,z2=h; +h, t..+h _ (see equations (B.57) and (B.59)).
Hence taking equation (B.22) into account:

E, +E,, =Ei +E] (2.19)

1x?
Ey, + E,, = Ej, +Ej, (2.20)
1 1 . 1 1 .
#—OBBx +M—OBOX =‘u—1 B;x +_lII—le , (2.21)
Do L L 1
a Doy o Boy = B T By (2.22)
forz=0,
Ef -ikjzj | g kjzj ET ~iki1Zi 4 B ki 2j 2.23
jxe jxe j+1xe / ]'+1xe ’ ( . )
E]fye-iijj + E].—;eikfzf — E;—ﬂye—ikjﬂz]' + E}';ly eikj+1z]~, (2.24)
1 . 1 . . - .
— Bt k5 + — B 4% = By, ethaE 4+ B, . k17 2.25
H; 7x H; > Mi+q jrlx Hysq jrix ( )
L g etz + g o = Bt e+ —— B, eE,(2.26)
] “] j+1 uj+1
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for z = z; = hy+h,+.. -l—h]. andj = 1,...,n—2, and

. . . L iz
E}_,.¢€ ~ikp_12n—1 +En_1xetkn_1zn 1 = E} efnen-1 | (2.27)
E* | gfn_1Zn—1 4+ F-  okn_1Zn—1 = f* giknzn—1 (2.28)

n— ly n—1y ny 4 )

1 Bt . eikn-17n—1 4 1 B tkn_12p—1 = _I_B+ e~ knZn—1 2.29
1] n— lx u n—-lxe M ( N )

n—1 n—1 n

1 . . 1 .

B} e *n—17n-1 4 B, efn-17n—1 = = p* iknzn-1  (230)

p’n— L n—1 y Ky . n—1ly My ny

forz=z, =h +h,+..+h,_ . The continuity equations (2.19)—(2.30) con-
stitute a system of 4n lmear equations. As the E-constants EOx, EOx, Egy, E' +
can be expressed in terms of the B-constants BOx, BOx, Bgy, o ny according to
equations (2.3), (2.7), (2.11), (2.13) and (2.17), the number of unknown quan-
tities in equations (2.19)—(2.30) is 4n+2 (including the quantities B, and B+
associated with the primary field). This means that two of the B- constants can be
considered »known» and the others can be determined in terms of them.
Equations (2.19)—(2.30) are resolved into two identical sets of 2n equations,
one containing only x-components and the other only y-components of the mag-

netic field B. All x-components can then be expressed in the form

B}, = 4B, (G=0,1,.,n), (2.31)

and similarly the y-components

B, = AB;, G=0;1,.,n). (2.32)

The coefficients A;' and A;, which are the same for both the x- and the y-com-
ponents, depend on the number of layers in the earth, on their thicknesses and
on the parameters o 7> € and ;. Note that Ay =1and A, = 0. Note also that it
would, of course, be equally possible to eliminate the B-constants and only use
the E-constants in the solution of equations (2.19)—(2.30).

One aim of the present work is to evaluate the potential differences at the
earth’s surface during a geomagnetic disturbance. Let us first express the electric
field at the earth’s surface as a function of the measured geomagnetic disturbance
on the earth’s surface. Now the total geomagnetic disturbance BM on the earth’s
surface has, according to equations (2.2), (2.4), (2.6), (2.8), (2.31) and (2.32),
the expression
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By = Byy(H) = B(z=0) + B,(z=0) = (B}, + By, )e, + By, + By )e, )"
= (1 + Ay)By, e, + Boye,)e " . (2.33)

This formula represents the magnetic field at the earth’s surface on the upper
side of it. Because the tangential component of the magnetic field B need not be
continuous across boundary surfaces, the magnetic field at the earth’s surface on
the lower side of it may in principle differ from equation (2.33). However, the
permeability of the earth may be assumed to be u, (SCHMUCKER, 1970, p. 3;
see also LAHIRI and PRICE, 1939, pp. 509510, PRICE, 1962, p. 1908, WaIt, 1962,
p- 516, ALBERTSON and VAN BAELEN, 1970, and NEVANLINNA and WELLING,
1975, p. 6), i.e. py =y ... = Py = Mg, -and so it follows from the continuity of the
tangential component of the magnetic field intensity A that the tangential com-
ponent of B is also continuous across all surfaces z=0, z=2,..,25 2, (cf
equations (2.21), (2.22), (2.25), (2.26), (2.29) and (2.30)).

The electric field at the earth’s surface is obtained from equations (2.1),
(2.3), (2.4), (2.5), (2.7), (2.8), (2.31), (2.32) and (2.33):

Ey; = Ey(t) = Ey(2=0) +E,(z=0) (2.34)
= (c(By, — B;)y)éx — ¢(B}, — B;,x)éy)e"wf

- A A / 1 "A- A A
= (1 — AQ)(Bp, 8, — Byye,)e ! = ¢ ITA? Buryey — Byxey)
0

_ Ay s
—CI+A_0 MXBZ.

Since the tangential component of the electric field £ is continuous, £, is the
same on the upper side and on the lower side of the earth’s surface.

The relationship between the electric and magnetic fields on the lower side of
the earth’s surface can be obtained from equations (2.23)—(2.30), which do not
depend on the electromagnetic properties of the air ‘or on the primary field. Due
to the boundary conditions this relationship, which is thus also independent of
the properties of the air, yields equation (2.34), if the electric and the magnetic
fields on the lower side of the earth’s surface are expressed by Ey; and (u;/ug)Byy
respectively. Hence the relationship between the electric field £,, and the magnetic
field By, on the upper side of the earth’s surface given by formula (2.34) has to
be independent of the assumptions that the air is non-conducting and has free
space permittivity, but any values of these parameters are in principle allowable;
only the free space permeability is assumed. This will be dealt with again in a
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more general manner in Section 2.7.

In the model in question both By, and Ej, are independent of the location on
the surface of the earth and both are horizontal.

Let Py = (x,,»,,0) and P2A= (*,,¥,,0) be two points on the earth’s surface.
According to the »conventiony made in Chapter 1 the potential difference between
them is obtained by integration along the shortest path on the earth’s surface, i.e.
along a straight line, so that

P —_— — —_
UPlP o= E-dl = f Ey ZZEM ) . (2.35)
Plfgalght Pys.l.

where 7= (x, — 1)e +(, - yl)e Equation (2.35) defines UP1P2 as the po-
tential drop when moving from P, to P,. Using equation (2.34)

1 —A]
Upypy() = ¢ 17 A% By (D(xy — x1) — By (D, — 1)) (2.36)

0
= By () cl A1

where [ is the length of 7 and

B, (t — (x —y e, —(x, —x,)e
BMz(t) _ Mx( )(}’2 yl) l ()( 2 —B (l‘) (Vz yl) ' l ¢ 2 1) y
(2.37)
is the scalar component of B, o in the (horlzontal) d1rect1on (0 yl)e (x2 ]/l
perpendicular to I The unit vectors e [, — yl)e X, —x,)8 ]/l and 7/l make

a right-handed system.

Let us express the complex field B, as
By = By, + By, 8, = B /@10 + B el@rede (2.38)
where B, =B, |, wt + ¢, =arg B, B IBM | and wt+yp, = arg By,,,. Referring
to Section A.l it is then seen from equatlons (2 34), (2.36) and (2.38) that the

.physical electric field and the physical geomagnetic disturbance on the earth’s
surface and the physical potential difference between P, and P, are

= en. A A
Bt phys = 77_17+ (—Bycos(wt + ¢, + ¢ —¢)e, + B cos(wt + ¢, +¢.— c,o+)ey()2 ,39)
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—_ A

Bus pnys = Bicos(wt + ¢y )e, + B,cos(wt + 902)/3\), (2.40)
and

cn.
UP1P2 phys — ni B (ry—yeos(wt + o1+ 9. — )= B,(x,~ X )cos(wl + v+ 0.~ 9,)
: (2.41)

The quantity n_is the modulus and the quantity ¢_ the argument of 4, — 1.
Similarly n, and ¢, are the modulus and argument of 4, + 1. Hence, expressed as
a formula,

Ayt 1=n, e (2.42)

Using equations (2.39)—(2.41) the electric field and the potential differences occurring
at the earth’s surface can be estimated as a function of the geomagnetic disturbance.
However, in practice the determination of 4 from equations (2.19)—-(2.30) is
laborious to carry out by hand, unless n is small. Formulae (2.39) and (2.40) show
that the physical fields Ey; ., and B, ;. are generally not perpendicular, though

equation (2.34) valid for complex fields might suggest perpendicularity.

2.3. Induction in a homogeneous earth

Let us now discuss the simplest case involved in Section 2.2, in which the
earth is taken to be homogeneous (n=1). The electromagnetic field within the
earth only contains a downward travelling wave (cf. equations (2.15) and (2.16)),
and the only continuity equations are

Eoy tEy, = Eiy s (243)
By, + By, =F,, (2.44)
1 1 - 1

E B, + Ildo By, = ; B7 ., (2.45)
and

1 . | O f

L'O—Boy +IJ_OBOy“IJ-B1y (2.46)

for z = 0. The subscript 1 has been omitted from u;, and likewise o, € and k will
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be used for the earth. By expressing the E-constants in terms of the B’s (formulas
(2.3), (2.7) and (2.17)), we easily obtain:

- Mgk —pw |
By, = *uokc T o Bg, _ (2.47)
and

- poke — pew
By, = —uokc T o By, (2.48)
Hence

- poke — pow
A, = _Hokc T (2.49)

Substitution of formula (2.49) into equation (2.34) gives

= MW A A
Ey = —“ok Bpgy € — Byriey) (2.50)
or
Enay _ By B0 (2.51)
BMx BMy ”Ok

The validity of equations (2.50) and (2.51) can be seen directly from formula
(2.17) and from the fact that the electric field is equal on both sides of the earth’s
surface while the corresponding magnetic field values differ by a coefficient ulug-

As mentioned above it is reasonable to put u equal to g, and for the frequencies
important in connection with geomagnetic variations the inequality ¢ > we is well
satisfied in practice (see SARAOIA, 1946, pp. 122—123, KELLER and FRISCHKNECHT,
1970, pp. 52 and 203, Kaurman and KELLER, 1981, pp. 1-4, and Table I of
this paper). The latter condition means that & can be approximated by (1—i)/6 =
(/2/6)e ™4 | where § is the skin depth defined by equation (B.45). Thus the
following formula is valid:

E FE wd w .

7S - S T S VAT 7 (2.52)
e e . .

By BMy V2 LoO

This formula is a basic result of magnetotellurics (¢f CAGNIARD, 1953, p. 616).
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Both equations (2.51) and (2.52) show that the increase of the conductivity of the
earth tends to decrease the electric field at the earth’s surface, which approaches
zero as the conductivity approaches infinity.

Since the electric field and the magnetic field are coupled by Faraday’s law of
induction (B.3), it might seem natural to assume that an electric field component
would be proportional to the time derivative of the orthogonal magnetic field
component. This proportionality is suggested by WAIr, 1962, p.512, and TAKALA,
1979, p. 27. Both refer to TikHONOV, 1950, who examines a two-layer earth
model with an infinitely conducting lower layer. Wait only speaks about the pro-
portionality of the amplitudes of the quantities in question and specifies the state-
ment for low frequencies. Since according to formula (2.38) the time derivative
of By, is

dB o
Mx — jeyB e TPV (2.53)

dt

equation (2.52) can be written as

w 1 _ w i 4+ v 4)
_E — _w infd _ W i(wtrp 7/ ]
My 10 B¢ to0 Bie (2.54)
_ 1 dBy, o-inl4
wro  dt
Eyp, and By, could, of course, equally well be considered. Equation (2.54) estab-

lishes that there is a phase shift of /4 between —Ej;, and dBy,,/dt and that the
proportionality coefficient between the amplitudes of —E,, and dBMy/dt depends
on w, i.e. on the rate of the time variation of the fields. For these reasons the
suggestion that the electric field and the time derivative of the orthogonal magnetic
field are proportional is questionable. The same conclusion is also obtained directly
from the investigation of the rigorous formula, where the proportionality coefficient
between —Ey,, and dBy,./dt is ufiugk, which depends on cw through k. It is also
seen from this proportionality factor that the phase shift is not exactly n{4, but
depends on w. In fact Tikhonov’s formula involves an additional coefficient in the
expression for £ My/BMx. This coefficient, which approaches unity as the thickness
of the upper layer approaches infinity, ie. as the earth becomes homogeneous, is

a hyperbolic tangent function whose argument depends on w (see Section 2.6).
Thus the statement that £y, and dBy,/dt would be proportional can actually be
considered even less valid in Tikhonov’s treatment than in the case of a homogen-
eous earth. The relationship between Ep, and the time-derivative of B, will be
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Fig. 2. Curve |Egl, UPPER LIMIT represents the amplitude of the electric field on the earth’s
surface as a function of the time period T, when the primary field is a down plane wave, the
structure of the earth is expressed by Table I and the amplitude of the magnetic field on the
earth’s surface is |Bg|. Curve |Egl, LOWER LIMIT and the notation x = 0 METRE belong to
a model in which the primary source is a line current. The dashed curve corresponds to |E ol,

UPPER LIMIT, but the earth is assumed to be homogeneous with a conductivity 10401mt.
The figure excluding the dashed curve is taken from ALBERTSON and VAN BAELEN, 1970.

discussed in Section 2.5 assuming a non-harmonic time-dependence.
The physical y-component of the electric field at the earth’s surface has the
following expression, which is obtained from formula (2.52) using equation (2.38):

I 5
EMyphys = ﬁ dwB, COS(&)t + ¢, + ‘4—) . (2.55)

The component £, phys has a similar express‘ion with B, and ¢, replaced by B,
and y,, respectively, and 57/4 by /4.

The dashed curve in Fig. 2 depicts the amplitude of £ Myphys 35 @ function of
the time period T = 27/co. The value 107*Q 'm™ was chosen for o, and B, was set
equal to [B,| shown in the figure. The original figure belongs to ALBERTSON and
VAN BAELEN, 1970, who have studied the electric field associated with geomagne-
tic disturbances using models in which the earth consists of eight horizontal layers,
and is so outside the topic of this section. The thicknesses and the conductivities
of the layers are shown in Table 1 (see Fig. 1). The permeability u is everywhere
equal to u, and the permittivity € has no effect. It is seen that the value of the
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Table 1. The thicknesses and conductivities of the eight-layer earth model used
by ALBERTSON and VAN BAELEN, 1970.

CONDUCTIVITY OF EARTH LAYERS

Layer Thickness Conductivity

(km) (1/S2m)

1 10 2x 1073

2 390 1x 104

3 600 5x10!

4 500 1x 109

5 500 1x 101

6 500 1x 102

7 400 5x 102

8 oo 1x10%

conductivity chosen for the dashed curve is the same as that of the second layer
in Table 1. .

Albertson’s and Van Baelen’s curve |Ey|, UPPER LIMIT represents the ampli-
tude of the electric field at the earth’s surface as a function of the period, when
the primary ficld is a plane wave and the amplitude of the total magnetic field on
the earth’s surface is [By|. It can be seen that the dashed curve yields higher values
than the curve |E,|, UPPER LIMIT. This can evidently be interpreted as being due to
the fact that the conductivity of the homogeneous earth is lower than that of the eight-
layer model on the average. Such an explanation is, however, not always straight-
forward, since in some cases the so-called apparent conductivity, which describes
the ratio of the perpendicular electric and magnetic field components on the earth’s
surface, may have a smaller value than the smallest conductivity of the layers or
a higher value than the highest conductivity (CAGNIARD, 1953, p. 618, see also
KAUFMAN and KELLER, 1981, pp. 75—104). For periods of less than 180s the
relative difference between the dashed curve and the curve IEOI,‘ UPPER LIMIT is
not very great (the ratio = 70 %). This is due to the fact that the higher the fre-
quency, the less significant the deep parts of the earth, where the two models
differ considerably. For a conductivity of 104 'm™? and a period of 180s, the
skin depth is 675 km. If the period decreases below the values shown in Fig. 3,
the curves obviously begin to differ more from each other again, since then the
difference in the conductivity of the uppemost ten kilometers becomes more im-
portant.

The curve |£yl, LOWER LIMIT, as well as the notation x = 0 METRE, belong
to another model of ALBERTSON and VAN BAELEN, 1970, in which the primary
source is a line current similar to that discussed in Chapter 3 of this paper.
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Substitution of formula (2.49) into equation (2.36) gives the following expres-
sion for the potential difference between two points P =(x,y,0)and P, =
(x,,¥,,0) on the surface of a homogeneous earth:

Up, p, (1) = [jﬂ—“’k By (O, — %) — Bpe O, ~ 1)) - (2.56)

To simplify the expression let us assume that I points in the direction of the posi-
tive y-axis, ie. I = o, - yl)é\y with y, >y, . (If this were not the case, the coor-
dinate system could, of course, be suitably rotated.) Then Y, — ¥y, =l and the
potential difference is

_ _ kol :
Upipy =~ ok Bt - (2.57)
This equation is equal to formula (2.51) (with E ay and By, ) multiplied by L
Similarly to equations (2.52) and (2.55) the following approximative formula can
be considered valid:

i .
Up p, =— N eml4 (2.58)
and
1 Sm
UPlephys = 7—5 18wB, COS((.OZ‘ + g, + T) . (2.59)

Using the values w = 1/60s (i.e. period = 27/w ~ 6 min), wB = 5 nTfs, 6 =
1032 m! and I = 200 km (¢f. SARAOJA, 1946, p. 122, ALBERTSON and VAN
BAELEN, 1970, and LANZEROTTI, 1979), equation (2.59) gives the amplitude of
the voltage the value 220 V, which means about 1 V/km. This voltage gives rise
to a current of 73 A in a power transmission line whose total impedance (for the
frequency in question) is 3 Q (¢f TAkaLa, 1979, p. 43).

2.4. Skin depth rectangle

We shall in this section discuss the potential difference between points P and
P, on the earth’s surface from another and more »practicaly point of view, which
I have not seen presented in the literature before. Define first a so-called skin
depth rectangle so that its sides are the straight line / between P, and P, on the
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Fig. 3. Definition of skin depth rectangle.

earth’s surface and the skin depth § for the frequency discussed (Fig. 3). For
simplification, let us again assume that the x-coordinates of P, and P, are the
same.

The »apparenty magnetic flux through the skin depth rectangle can be defined
as the product of the area of the rectangle and the perpendicular component of
the magnetic field on the earth’s surface. Thus, using formula (2.40) the apparent
physical magnetic flux through the skin depth rectangle in the positive x-direction
is

ba phys = 18 Bagyphys = 16 B cos(wt + ¢,) (2.60)

According to Faraday’s law of induction the negative time derivative of the mag-
netic flux through a circuit is equal to the (right-handed) induced electromotive
force (or voltage) in the circuit (formula (B.54)). Therefore it is natural to define
the »apparent» electromotive force € £) in the circuit P, P, Py P| (in this direc-
tion, see Fig. 3) as

a phys(

d
€4 phys = ——¢ZZ;L"E = [8wB, sin(wt +¢,) = lSwBlcos<wt+ A +37ﬂ) 2.61)
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It can be seen from equations (2.59) and (2.61) that the apparent electromotive
force gives an estimate for the potential difference, because their amplitudes only
differ by a factor of /2. In addition there is a phase shift of 7/4 between Up P, phys (D)
and e, ,,0(0).

‘Notice that it is aot necessary for this discussion of the apparent magnetic flux
and of the apparent electromotive force for y and g to be equal; equation (2.59)
should simply be multiplied by u/p,, in the definition of the apparent magnetic
flux the magnetic field on the lower side of the earth’s surface, ie. (W/1o) By,
must be used, and § is the correct skin depth including u. The definition of the
apparent magnetic flux can also be extended to situations where the magnetic
field is not constant in space on the earth’s surface by using the average value
along the line I

2.5. Induction in a homogeneous earth with non-harmonic time-dependence

~Let us now discuss induction in a homogeneous earth by neglecting the assump-
tion of harmonic time-dependence. Assume, however, that the primary electromag-
netic field is still transverse and only depends on z and ¢. Due to symmetry all
other fields are also functions of z and ¢ only, and evidently they are also trans-
verse. Referring to the exact definition of a plane wave in Section B.6 all fields
are thus plane waves. Assume further that the physical fields can be expressed as
time-frequency-Fourier integrals according to equations (A.7) and (A.8). The y-
component of the electric field and the x-component of the magnetic field on
the earth’s surface can be written as

By (1) = ﬁi Eppy (@) des = Re [ V% Of EMy(w)eiwtdw] (2.62)
and

By (B) = 117 j:B L(©)e! e = Reh/ f (w)e'wfdw] (2.63)
where

By (w) = 1277 I By, (De it (2.64)
and

By(@) = = [ B, (e ldt | (2.65)

Si-
=
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It follows from the reality of F My(t) and B, (f) that equation (A.14) must be
satisfied by Ej,(w) and by By, (w)- The latter equalities of formulas (2.62) and
(2.63) are a consequence of equation (A.14), as shown in Section A4 (equation
(A.15)).

Since a direct application of the definition of the Fourier transform shows that
Maxwell’s equations are valid for each Fourier component of the fields and sources
separately, assuming »sufficient» regularity of the fields and of the sources, it
seems natural that the discussion about harmonic plane waves in Section 2.3 is
valid for the behaviour of the Fourier components of the present electromagnetic
field (cf. Chapter 5). Therefore it follows from equation (2.52) that under the
assumptions u = g, and 0 > we

w
By (@) =— @e’"/“BMx(w). (2.66)

Equation (2.52) was derived for w > 0 and so equation (2.66) is directly valid
only for these values of w. If the angular frequency is zero, i.e. there is no time
dependence, it can be concluded that the electric field associated with the mag-
netic field is zero. Therefore the case w = 0 can formally be included in equation
(2.66). 1t should alse be borne in mind that the function £ (t) does not change
even if the values of Ey,, (w) are changed at separate pomts w (Section A.4). This
means that the value of £ y(co—O) need not be specified exactly. As will soon be
confirmed, negative values of w can also be formally included in equation (2.66).
As already mentioned, equation (2.52) requires that the angular frequency w
is much smaller than the quantity o/e, the inverse of the relaxation time. So equa-
tion (2.66) cannot be used for all frequencies appearing in formulae (2.62) and
(2.63), where the integration over w goes to infinity. However, if the conductivity
of the earth is of the order of 107%...103Q'm™! and e = 10¢,, the quantity ofe
has a value of the order of 10°2...107 s7! (see SARAOIA, 1946, pp. 122—123). Then
the frequencies for which equation (2.52) is not valid are really very high from a
geomagnetic point of view (KELLER and FRISCHKNECHT, 1970, p. 203). Therefore
the contribution of the values of ¢ for which equation (2.66) is not true is evi-
dently negligible in the integrals

f Ep(w)e’*dew and f Ee”’/“B L(w)e' T dew .
0

In other words, if w, is an upper limit of the positive angular frequencies for
which equation (2.66) can be used, £ My(t) can obviously be approximated as
follows:
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‘/% Of (w)e"’”dw] (2.67)

~ Re ‘/‘f 1/—e”'/43 (w)e'wtdw]
%Re[~1/>f ——e'"/4B (w)e“‘"’dw] :

The validity of these approximations depends on the time ¢.

To be more accurate, however, let us use the exact formula (2.51), which gives
equations (2.52) and (2.66) as an approximation. Assuming that y is equal to Mo
the rigorous formula is

By (@) = — F(“—’O)—)BM,C(@) : (2.68)

For the time being this equation is only valid for positive angular frequencies. In
the same way as equation (2.66) the value w = 0, for which Ejyry(w) is equal to
zero, can also be included in equation (2.68) (if the conductivity of the earth is
not zero, which is an assumption in all discussions in this work). As mentioned,
Eyp,(w) and By, (w) satisfy equation (A.14). Therefore equation (2.68) is for-
mally valid for negative values of w, too, if only the argument of k is chosen to
lie in the third quadrant of the complex plane, i.e. —m <argk(w) =
argy/ w2 o€ — iopoo < —3m/4 (cf. inequalities (B.42)). This can also be seen by
making the treatments above with an assumption of a time-dependence e™*
(w > 0). The validity of equation (2.66) for negative angular frequencies is satisfied,
requiring analogously that +/w is on the negative imaginary axis, i.e. argy/w =
—7f2.

Let us denote dB,,, (£)/dt by g(t). Then the Fourier transform of g(¢) is

8(w) = iwBy,, (w) (2.69)

(see equation (A.9)). Hence equation (2.68) can be written as

@) (2.70)

E :w)

My

xR
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Equations (2.62) and (2.70) give that

By (6) = \/— fkg—‘*’% Wt ey = V%Re[ f ?((—)) “’”dw] @.71)

0

The expression of E My(t) will now be written in a new form using the con-
volution theorem (formula (A.13)). With the employment of equation (A.70)

= jetw! o

: catjze s (; O
\/2—7T_£ k(w) dey == to€ et Jo(l 26)9@)- (2.72)

In this formula, J, denotes the Bessel function of the zeroth order (see Section
A.6), 0(2) is the step function defined in Section A.3 and o # 0. Equation (2.72)
indicates that i/k(cw) is the Fourier transform of the function c(t) = —/2n/uq€ -
e oty o(iat[2€)6(¢), and inversely it is possible to show that formula (A.7) is
also satisfied. From equations (2.71) and (A.13) it follows that

Eyy(0) = 7= § (0 = w)cliddn 2.73)

- ouf2e ot
\/ﬁ;fg(t u)e” J, (l % )a’u

Since g(¢) is the time derivative of B, (f), equation (2.73) shows the dependence
between £, (1) and dBy, (9)/dt, which is not a simple proportionality. We see that
E My(t) is only influenced by the values of g(¢) before and at time ¢, which is
natural because of causality, or in other words, the fact that the function c(u) is
zero for u < 0 agrees with causality. If u is very large compared to efo, the
function Ji(fou/2€) can be replaced by the first term of the asymptotic expansion
given by formulae (A.50) and (A.54)—(A.56):

12 V—
;o4  (miou cou Ty V€ ouj2e
JO(Z 26) ( e ) cos(z e 4) o . (2.74)

The larger ofe, the smaller the values of u that can thus be included in this ap-
proximative formula. Let us substitute the right-hand side of formula (2.74) for
Jo(iou/2€) in the integral of equation (2.73) in spite of the fact that the integra-
tion starts from u = 0. Then

I S { (2t )
Eppy(t) = Wof v du , (2.75)
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which is exactly the result that the use of equation (2.66) instead of (2.68) would
have given (cf. CAGNIARD, 1953, p. 611). This is natural since both equation
(2.66) for all values of w and equation (2.75) are rigorously valid if o/e is infinitely
large. If the error made in the neighbourhood of the point u = 0 in the integral
can be proved negligible, equation (2.75) ¢an be used.

Now we consider an example in which the magnetic field is assumed to be

Byp(D) = By0(t)e™ (2.76)

where B, and n are real and positive constants and 6(¢) is, as above, the step
function. Equation (2.76) implies that there is an aprupt change in By, at time
£=0 and as time elapses the magnetic field returns to its initial value (= 0).
The change at time ¢ = 0, which is discontinuous, is only a rough idealization for
a relatively rapid but continuous physical change in the magnetic field. This dis-
continuity can also be regarded as questionable from the viewpoint of the assump-
tion mentioned in section that the quantities vary continuously with time if
Maxwell’s equations are used. One solution to this difficulty is to assume that
By, (2) is only arbitrarily close to formula (2.76) but continuous with also a con-
tinuous derivative. In practice the highest values of the time derivative of a geo-
magnetic field component are of the order of 10 nT/s (see LANZEROTTI, 1979).
It follows from equation (2.76) and Section A.3 that

dB
o) = d’f" = By5(t)e™™ — Byn(t)e™ , (2.77)

where §(2) is the Dirac delta function. Substitution of equation (2.77) in equation
(2.73) and the use of equations (A.4) and (A.5) give

B £ B ne™ t ou
_ 1] ~0t[2e ; _0_) 420 -(0/2e—n)u ( _)
e e Jo(z e \/Mo_e J e JO 126 du,t>0
B
0 .
e —_— pammdy 2.78
E'My(t) 5 '—,uoe s t=20 ( )
0, <0

If equation (2.75) is used, the result is
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B, Byne™ le

- du, t>0
Vﬂ'ﬂoot Voo I\/—
Eyp, @) = 17, t=20 (2.79)
0, t<0.

In the limit where 1 approaches zero, equations (2.78) and (2.79) can simply be
written as

BO -otf2€ .ot
By == 7z Jo(z =-Joe (2.80)
and
B,
Biy(® =~ Jroiar a(t) (2.81)

respectively. Equation (2.81) involves the same result as WArT’s, 1954, equation

(8) with 8 = 1. The subscript 1 of ¢; and also the quantity AH, are missing from
Wait’s expression for e, (f) and the summation sign is in the wrong place in his
equation (8). Using formula (2.74) it can be seen that equation (2.80) approxi-
mately reduces to equation (2.81) if the condition ¢7/2¢ > 1 is satisfied. The dif-
ference between equations (2.80) and (2.81) is greater, the earlier but non-negative,
the time t.

2.6. Induction in a two-layered earth

In this section the special case n = 2 of Section 2.2. is discussed. Formulae
(2.19)—(2.22) and (2.27)-(2.30), whose total number is eight, now constitute all
boundary conditions. The quantity 4, can be obtained from these equations and
the result is

o Mokycay — py way

= 2.8
0 pokicay +p,wa, (2.82)
where
ky, — uyk .
@ =1 ik M« Wl N AL (2.83)

uiky + uoky
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and

Bk, ok o2k h

2.84
Byky +pyky (2.84)

a, =1

omitting the subscript 1 from k. Substitution of formula (2.82) into equation
(2.34) yields

F, =% p o g2 (2.85)
M "Loklal( My“~x Mx“y :

or

Ly — EMx: L L) . (2.86)
By, By, Mok oy

Equations (2.83), (2.84) and (2.86) involve the same result as WarIr’s, 1954, for-
mulae (2) and (3).

If both layers are assumed to have equal electromagnetic parameters making
the earth homogeneous, «,; and a, become equal to unity, and so formulae (2.85)
and (2.86) reduce, as expected, to equations (2.50) and (2.51), respectively. An-
other means to achieve the case of a homogeneous earth is to let h grow infinitely
large. This also makes o; and o, equal to unity, assuming that the conductivity
o, of the upper layer of the earth is not zero. If o, = 0, the limit # - o does not
reduce the situation to that treated in Section 2.3., since the influence of the,
lower layer is always seen because the field is not attenuated in the upper layer.
So the upward propagating field does not vanish in the upper layer even in the
limit. The formulae for a homogeneous earth are also obtained with the substitu-
tion A = 0.

If the conductivity o, of the lower layer approaches infinity, &, and o, ap-
proach 1 +e 2%1% and 1 — e 2*17 respectively, and equation (2.86) becomes

E E W
My Zmx B n (2.87)
By By, Mok

This is exactly the situation discussed by TixHONOV, 1950, and mentioned in
Section 2.3 (see also Wart, 1962, p. 512). If h now approaches zero, £, also goes
to zero, which is natural, since the horizontal electric field has to be zero at the
surface of the infinitely conducting layer.

Equations (2.83) and (2.84) show that if h is much larger than the inverse of
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[Imk, |, the approximations &; ~ &, = 1 can be made. Formula (2.86) then indi-
cates that the lower layer has no influence. In othet words, the electromagnetic
field is so efficiently damped in the upper layer that the lower layer is not sensed.

Let us assume that u, and u, are equal to u, and that both inequalities o, >
we, and 0, > we, are satisfied. Formulae (2.83), (2.84) and (2.86) can then be
expressed as

6,8,

_ -21/8 | -2ih/8
o, =1+ 5, 5, e e 1, (2.88)
8; =8, on ;

1 -2n/5, ,-2iRf5
o, = 1 5, 5, e le 1 (2.89)
and
EMy _ EMx _ wb | Qy el = I/L % el7l4 (2.90)
By By V2 o Koy @4

where the skin depths of the layers of the earth are denoted by &, and &, (cf.
equation (2.52)). The result of equations (2.88)—(2.90) is also given by CAGNIARD’s,
1953, formulae (28)—(30). Considering the equation k; = (1—i)/8,, which was assumed
valid in the derivation of formulae (2.88)—(2.90), the assumption k> IImkll‘1
treated above simply means that h is much larger than the skin depth of the upper
layer.

Formulae (2.88)—(2.90) and also (2.83), (2.84) and (2.86) are consistent with
the fact that the electric field EM approaches zero as ¢, approaches infinity, though
the exact dependence of £, on ¢, is not as straightforward as in the case of a
homogeneous earth. The thickness 4 of the upper layer does not affect the result

lim £,; = 0 (provided £+0), and so & may be decreased arbitrarily without

01—>c0

changing the first limit, ie.

lim (lim £,) =0. (2.91)
h—=>0 0>

If the same limit processes are made in the reverse order the result is not the same
since, as indicated above, the limit # - 0 (with ¢, # ) makes the influence of the
upper layer vanish, and

. . = My A A
1 limE,)=——(B — B . 2.92
ollz)nw (hil)l(l) M. “OkZ ( Myex Mxey) ( )
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The observation obtained here that the »double-limit» depends on the order of the
limit processes is not exceptional; another similar case is shown in Section 3.3.
Two more examples of the same phenomenon are given by D’ERCEVILLE and
KuNETZ, 1962, p. 657, and PirioLa, 1975, pp. 53—54. However, it seems very
difficult to perform one of d’Erceville’s and Kunetz’s limits (w - 0) in practice
using the formula given by them on page 665.

2.77. Induction in an earth having arbitrarily changing properties in the vertical
direction

Formulae (2.51), (2.52), (2.86) and (2.90) imply basic principles of geomag-
netic induction in the earth, and the treatment of models where the earth consists
of more than two layers is neglected in this work referring to the general equations
represented in Section 2.2. Three-layer earth models are discussed by CAGNIARD,
1953, and WAIT, 1962. The cight-layer model treated by ALBERTSON and VAN
BAELEN, 1970, was mentioned in Section 2.3.

The induction problem discussed in this chapter can be formulated in a still
more general form by assuming that the parameters o, € and u of the earth are
arbitrary functions of depth. The conductivity is, however, assumed to be finite
everywhere. The tangential component of H is then continuous (see formulas
(B.58) and (B.59)). It should be noted, however, that the treatment would also
be equally possible, and actually easier, with infinite conductivities. Lateral varia-
tions in the parameters would completely change the treatment, because the as-
sumption valid now that the only space-dependence of the fields is with respect
to z would not be true, and lateral variations are not accepted here. As above,
the air is regarded as electromagnetically free space, the primary electromagnetic
field is expressed by formulae (2.1)—(2.4) and the secondary field in the air by
equations (2.5)—(2.8). Since the time-dependence is harmonic, it would seem
tempting to think that the field in the earth, excluding the possible planes of
discontinuity, is simply obtained from wave equations (B.43) and (B.44), provided
that the z-dependence of k is taken into account. This is not, however, correct,
because the derivation of the wave equations assumes the parameters to be con-
stant. Therefore, the original Maxwell equations must be considered.

Maxwell’s equations (B.12) and (B.13) yield

VxE = —iwufd (2.93)
and

VxH = (0 + iwe)E (2.94)
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where formulae (B.21), (B.22) and (B.25) have been used. Equation (2.94) cannot
be written in the form of formula (B.24), because u may have space dependence.
Taking the divergence of equations (2.93) and (2.94) gives

v-E:—%w-H (2.95)
and

_ 1 _
v . = — 1 .

E Py i(.oev(q + ice)- E (2.96)

Equations (2.93)-(2.96) are Maxwell’s equations for the present problem. For-
mula (2.95) is completely equivalent with equation (B.2), and formula (2.96)
compared with equation (B.1) shows that the total charge density is —ey/(0+iwe)
V(o+iwe): E. Formulae (B.10), (B.21) and (2.96) give the expressions

o, F 5. 0Ve—eVo = _ o? €\ . &
Pimse = €V E+Ve E = = (0) B

o +iwe o +iwe @97)

for the true charge density (see NEVANLINNA and WELLING, 1975, p. 7).
The curl of equation (2.93) and the use of equations (2.93), (2.94) and (2.96)
yield the wave equation

v2E‘+v(V@+i°’e)'E) + V‘”‘(HVXE) +K2E=0.

o+ iwe (2.98)

The other wave equation is analogously obtained from equations (2.93)—(2.95):

V2 + v(v“' H) + Vo tiwax(VxH) | g2 ¢ (2.99)
In o +iwe

Maxwell’s equations (2.93)—(2.96) and wave equations (2.98) and (2.99) are valid
at every point where the properties of the earth vary continuously. At points of
discontinuity boundary conditions have to be used.

Formulae (2.93)—(2.99) are valid for any space variation of the parameters be-
cause the assumption of vertical variation only has not yet been utilized. Equa-
tions (2.98) and (2.99) show that adding the space-dependence to k is really not
sufficient to make the »normaly wave equations (B.43) and (B.44) correct for the
inhomogeneous case. ALBERTSON and VAN BAELEN, 1970, however, use the
»normaly wave equation for the electric field inside the earth neglecting the dis-
placement current and with the assumed z-dependence of the conductivity taken
into account. This is correct, because Albertson and Van Baelen also assume that
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the charge density is zero in the earth, thus making the second term in equation
(2.98) vanish; the third term is zero owing to their assumption that u is equal to
Uo, Le constant.

Let us now make use of the fact, valid in this section, that only z-space-depen-
dence is present. Equations (2.93) and (2.94) then show that the z-components
of A and £ are zero. This implies that the right-hand sides of both formula (2.95)
and formula (2.96) vanish. Hence the total volume charge density in the earth is
zero, and from equation (2.97) we see that this is true for all kinds of volume
charge. No charge can appear on the planes of discontinuity z=constant, including
the earth’s surface, because £ and D have zero z-components (see Section B.7).
The wave equation (2.99) reduces to

3*H 1 d(o+iwe) o
9z2 o+ iwe dz 9z

+k2H=0, , (2.100)

from which # (= Bfu) =H(z) - €“* can be solved. Equation (2.100) is a linear
and homogeneous differential equation of the second order with respect to z. Its
general solution is

H=H'f(2)é“" + Hf.(2)e!* (2.101)

where H* and H" are two constant complex vectors and f,(z) and f(z) two lin-
early independent solutions of the differential equation. The notations + and —
are used for analogy with Sections 2.1 and 2.2. The exact dependence of o+iwe
and y on z should be known to be able to study the functions f(z) and f. ‘(z)
thoroughly. So the discussion of the directions of attenuation and of phase and
energy propagations is omitted here (cf. Sections B.6 and B.9). As pointed out
above, the z-component of H vanishes. Therefore the z-components of A% and H"
will be equal to zero. We obtain from equations (2.94) and (2.101) that

1 N Jin df;(z) eiwt + L 2 7= df_(Z) eiwt‘

o +iwe €z X dz o +iwe €; X dz (2.102)

E=

The solution (equations (2.101) and (2.102)) was obtained utilizing the wave
equation. Hence it is best to ascertain that Maxwell’s equations (2.93)—(2.96) are
really satisfied (c¢f. the comment after formulae (B.43) and (B.44)). The validity
of equations (2.94) and (2.95) is already involved in the above discussion, and the
former also shows that equation (2.96) is satisfied. The validity of formula (2.93)
can be proved to follow from equations (2.94), (2.95) and (2.99).
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If the earth has one or several planes of discontinuity z=z;, j=1,..,n—1,ie n
»continuous» horizontal regions, the solutions (2.101) and (2.102) must be obtained
for each layer separately. The functions f(z) and f.(z) are different in different
regions. This could be acknowledged by denoting ]j-_(z) and f]-+(z) (¢=1,...,n). The
solutions for different regions are joined together through boundary conditions. It
seems reasonable that in the lowest continuous region only one fixed linear com-
bination of the solutions f,(z) 4nd f.(z) can be accepted for physical reasons. Let
us assume that the accepted one is merely f, (z), for any fixed linear combination
of the original functions f,(2z) and f.(z) can be denoted by f, (z). So, as in Section
2.2, the total number of unknown coefficients in the earth is 4n—2. These are
I{fx cHiy, Hy, Hi, Hyo Hy, and Hp (Iﬁ/y denotes the x/y-component of
H* in the jt* region.) The continuity conditions of £ and H at the boundaries
z=z; (j=1,...,n—1) give 4n—4 linear equations, which resolve into two identical
sets of 2n—2 equations, one containing only H, - and the other only H-quantities.
The situation is thus very similar to the special case of homogeneous layers dis-
cussed in Section 2.2, and all coefficients in the earth can be expressed for exam-
ple in terms of H}, and Hj,, as

Hf, = Y H}, G=1,.,m) (2.103)
and
Hj, = Y7H], G=1,..n). (2.104)

The coefficients Y].’r and Y]-' depend on the properties of the earth and are in
principle known. The analogy between formulae (2.103) and (2.104) and equa-
tions (2.31) and (2.32) is not complete, since in this section only boundary con-
ditions inside the earth have been treated.

The treatment of the magnetic flux density B instead of the magnetic field
intensity A would certainly have been equally possible in the above discussion,
but the latter was chosen because its treatment seemed simpler.

Using equations (2.101)—(2.104) and the fact that the tangential components
of £ and A ie. in this case the total vectors E and A, are continuous, the magne-
tic and electric fields at the earth’s surface on its upper side have the following
expressions:

By = By(t) = uof, + Y L)UH 8, + HY &) e (2.105)

and
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Ey = Ey@® :——01 T e WA VI8, - Hi e et (2.106)
1 "+Y . _
J i/ e, x By .

T (o, +iwey) LY.L

In these equations ¢; and €, denote the values of the conductivity and the per-
mittivity of the earth at the earth’s surface, ie. 0, = 0(z=0) and €, = e(z = 0),
fi £, f, and £’ are the values of the functions f,(z) and f.(z) connected with the
uppermost layer and of their derivatives at z =0, respectively. As in the case of a
horizontally layered earth, E and B , which have no vertlcal components, are
1 Y
o, tiwe, f, + Y’
which has the dimension of resistance (£2) and is equal to the ratios po £y, /By,
E Mx/HMy and ‘ﬂoEMy/BMx = —Eyp/[Hyp, can be called the surface impedance
at the earth’s surface. It depends only on the properties of the earth. (In formulae
(2.34), (2.50) and (2.85) the (implicit) surface impedances are “0 1 _;Z% ,

constant all over the surface of the earth. The quantity —

—
tew HO g pwoy 1w oy pinl4 .
—=xl—e and , respectively.)
k o kyoy V o, o

The relationship between E,; and B, is thus independent of the primary field
and of the properties of the upper half-space, the air, whose electromagnetic
parameters in principle need not even be constants, provided the permeability of the
air at the earth’s surface is denoted by u, (see the comment after formula (2.34)
in Section 2.2). So the assumptions made at the beginning of this section about
the air and the primary field can be considered too limiting and unnecessary. How-
ever, a harmonic time-dependence and only a z-space-dependence of the field in
the earth were assumed when deriving formula (2.106) (see. Chapter 5).

If the original assumptions that the primary and secondary fields are given by
equations (2.1)—(2.8) are valid, £,; and B,, must be equal to the vectors
c(By — By) x €,¢'“" and (B}, + By)e'?, respectively. When these equalities” are
explicitly expressed and equations (2.4), (2.8), (2.105) and (2.106) are used, four
linear equations with four unknowns B, By H’l’x and H+y are obtained, if the
vector B associated with the primary field 1s regarded as known. This set of
equat1ons is, analogously to the situations above, comprised of two identical pairs
of equations, one containing only x- and the other only y-components. The former
yields By, and Hj, in terms of By, and the latter B, and H in terms of B
Then both Ey, and B ' could be obtained as functions of the prlmary field and
of other parameters.
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The potential difference ‘between two points on the earth’s surface is given by
equations (2.35) and (2.106).

2.8. Comment on Cagniard’s remarks

CAGNIARD, 1953, gives an expression for the magnetic field on the earth’s
surface on page 608. This expression is based on Maxwell’s equation (B.13) in the
integral form neglecting the displacement current (Ampére’s law) and on the as-
sumptions of a harmonic time-dependence and of only a vertical space-dependence.
Owing to the low frequencies compared with the relaxation time of the earth,
the neglect of the displacement current is really permissible in connection with
geomagnetic induction. In his remarks on page 609 Cagniard, on the other hand,
expresses the magnetic field as an integral which occurs on the earth’s surface and
is caused by the horizontally-directed and laterally homogeneous currents induced
within.the earth. This integral is rigorous in the case of direct currents, but since,
as mentioned, the frequencies are low, it is clearly applicable also in the treatment

- of geomagnetic induction. '

The latter of the two magnetic fields expressed by Cagniard is half of the for-
mer. In his remarks Cagniard explains that the inequality of these fields is due to
the use of the formula which is fully accurate only for direct currents. But the
true reason for the difference is that the former field represents the total magnetic
field, while the latter is the secondary, reflected magnetic field. These fields differ
from each other by the magnitude of the primary magnetic field whatever the
frequency of the time variations is. The fact that it is a question of two different
fields also seems to be recognized by PRICE, 1962, p. 1911, and by KAUFMAN
and KELLER, 1981, pp. 49—50, although they do not refer to Cagniard’s remarks.

If the field due to the induced currents within the earth is calculated using
Ampére’s law, the contribution of the magnetic field at z = oo to the line integral
does not vanish for any frequency as in Cagniard’s calculation, where the total
magnetic field is discussed.

3. Induction in the case of a line current primary source oscillating
harmonically in time

3.1 Description of the model and the expressions of the primary field

As in Chapter 2, let us describe the earth as the lower half-space and the earth’s
surface as an infinite plane. The upper half-space, the air, is again assumed to be-
have electromagnetically as free space. At a later stage in this chapter some con-
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ductivity will be assigned to the air. As will be stated, this conductivity may be
arbitrarily small. The primary electromagnetic field is now assumed to be caused
by an infinitely long (true) straight line current situated parallel to and at some
height above the earth’s surface in the air and oscillating harmonically with time.

The Cartesian coordinate system in Chapter 2 is also used in this chapter, ie.
the x- and y-axes point northward and eastward, respectively, the z-axis points
downward and the earth’s surface is the plane z = 0. If the primary current flows
in the direction of the y-axis in the plane x = 0, the expression for the current
density is

J =Je's(z + s (x)e, G.1)

where J is a complex constant implying the magnitude and the phase of the cur-
rent, the &’s are delta functions (equations (A.3) and (A.4)), and #(>0) is the
height of the current from the earth’s surface. The angular frequency w is assumed
to be positive (and the unit vector 'e\y points in the positive y-direction). The cur-
rent density of equation (3.1) is »delta-type» — infinitely large at the line x = 0,
z = —h and discontinuous in the transverse direction, which are idealizations.
Although the fixation of the coordinate system and equation (3.1) define the
source current as parallel to the east-west direction, the treatment of this section
is not confined to this case. If the direction of the current differs from the east-
west direction, but is parallel to the earth’s surface, the coordinate system has to
be rotated.

The primary field, which is the electromagnetic field caused by the current of
equation (3.1) in free space around it, can be calculated using formulae (B.80)
and (B.81). The discussions in Sections B.1 and B.8 can be referred to concerning
the point that the infiniteness and transverse discontinuity mentioned above are
accepted in equations (B.80) and (B.81). It should also be noted that the current
density given by equation (3.1) makes the integral [da'A’- [[ R vanish, as S
approaches infinity. This, as stated in Section B.8,Sis necessary for the Lorenz
condition (B.74) to be satisfied by formulae (B.78) and (B.79) and hence also for
the use of equations (B.80) and (B.81).

Alternatively it is possible to derive expressions for the primary electromagnetic
field assuming first a finite thickness to the current, solving Maxwell’s equations
inside and outside this current »tubey, setting continuity conditions at the surface
of the »tubey and letting the thickness of the »tube» finally go to zero. Let us,
however, use a »modified version» of the former manner in which the primary
electric field  is calculated from equation (B.80) and the primary magnetic field
B from Maxwell’s equation (B.3).
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The divergence of the source current given by formula (3.1) vanishes, and so
does not imply the existence of charge (equation (B.18)). In addition to the cur-
rent of equation (3.1), there could be time-independent source charge, but then
a new situation would be generated in which the origin of the whole phenomenon
would no longer be the current of equation (3.1) alone. The existence of time-
independent primary charge would also make the future assumption invalid, Le.
the only time-dependence occurring is e!w? (This last statement is true in anal-
ogous situations later in this work, too, when a time-independent or an exponen-
tially damping primary charge is rejected.) So we assume that all primary charge is
identically zero. Hence only the last integral in equation (B.80) remains and

iw (t— Vix—x)24p—y) 2+ @—2)? )
o oo josfe c 8@ +mseHe,,
Er, )=~ . NN - s (, )OE)e, dx'dy’dz’
41'(6002 e V=2 +@y—y)2+iEz-2)
Lw 2
iw#ofei“’t n P e :
_ g, ) d (3.2)

4n . VX2 (@R —y)? 4

where formula (A.4) has been employed. The unit vector é\y is the same for both
the source point 7' = (x', ¥, z) and the point of observation r = (x, y, z), ie.

'?y = ’éy,. By denoting the real and positive quantity vx? + (z + k)2 by r, and
changing the variable of integration to u = y' — y the electric field can be expressed

as :
; iwt Ai% Vrgsu®
G P S S d (3.3)
hy=————&€, ] —=——=—du .
21 Yo V2 +u?

If a new variable of integration « is introduced by o = V1 + u2/r%, equation (3.3)
implies that

. i - i‘oa
iwpgle' ™t e ¢

e —— da
2m y{\/a2—1

Equations (3.3) and (3.4) show that £ does not depend on y, which is natural for
reasons of symmetry. The integral in equation (3.4) can be expressed in terms of
the Hankel function of the second kind and of the zeroth order H(()z) using equa-
tions (A.24), (A.29), (A.66) and (A.67); thus

Ert)y=— (3.4)
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_ wpJet et —
Eer,z, ) = — ”"T HPk N+ @ T R)E, 3.5)

where formula (B.91) has been employed.

All fields can be assumed to have the time-dependence e*“’? of the primary
source expressed by formula (3.1). The justification of this assumption for the
primary magnetic field is seen from formulae (B.81) and (3.1) without any inte-
gration. Thus, the primary magnetic field, using equations (B.3) and (3.5), is ex-
pressed by

Bx,z,H) = — 1—(1; V x E(x,z, t) (3.6)

iugkoJe'
a2+ (z +hR

HP(kyVx2 + @ + )D(—(z + h)e, + x¢,) .

The Hankel function of the second kind and of the first order is denoted by H?),
and formula (A.40) has been utilized.

For frequencies significant in connection with geomagnetic variations kg is
small compared with the inverse of a reasonable value of vx2 + (z + /)2 for ex-
ample for w = 357! k, is equal to 108m! (see KAUFMAN and KELLER, 1981,
pp. 2—3). Therefore formulae (A.48) and (A.49) for small arguments of the Hankel
functions can be used in equations (3.5) and (3.6), which then have the forms

iwt

wiyJe

_ i ——

Bx,z,t) = —— log(kyVx2 + (z + r)?)e, 3.7
and

_ Jetwt z + h)e, — xe.

Bz ) = — 2 (* e, xe, (3.8)

2mVx2 + (z + )2 Vx2 + (z + h)?

The quantity vx2 + (z + h)? = r,, gives the distance of the point of observation
from the line current, and the vector ((z+ k), —x’e\z)/\,/x2 + (z + h)? is the cylin-
drical unit vector ¢  around the line current. Hence the magnetic field is fairly
accurately obtained from the formula which is valid for a time-independent straight
line current and which is obtained from Maxwell’s equation (B.4) with the term
lo€o0E/0t equal to zero and using Stokes’ theorem.
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3.2 Induction in a horizontally layered earth

In a manner similar to that of Section 2.2, the earth is again assumed to con-
sist of n horizontal layers (Fig. 1) with constant conductivities 0; (F ), constant
permittivities €;, constant permeabilities y; and thicknesses hj (h, = °°).'It was
mentioned in Section 3.1 that the only time-dependence appearing is e’“’?,
due to symmetry all fields have to be independent of the y-coordinate.

The secondary field caused by the earth in the air satisfies Maxwell’s equations
(B.35)—(B.38) with 0 = 0, € = ¢, and u = u,. Thus no charge is associated with’
the secondary field in the air either. This is also true later when a small conduc-
tivity of the air is assumed. Formulae (B.43) and (B.44) with k = k,, (equation
(B.91)) are also valid. Then

and

2E, %E
y Yy 2 —
o2t Tk =0. (3.9)

Equation (3.9) is solved in the form

E, = f)s(2) , (3.10)

where the time factor e?’* has not been written explicitly. This method of solving
is known as separation of variables, see e.g. STRATTON, 1941, pp. 197—198, MORSE
and FESHBACH, 1953, pp. 497—498. The substitution of equation (3.10) in equa-
tion (3.9) after manipulation makes

1d%x) __1d%@) _ 4
Foa g dr kZ (3.11)

The left-hand side of equation (3.11) depends only on x and the right-hand side
only on z. A change in x cannot affect the right-hand side and vice versa. Because
equation (3.11) is valid for all values of x and z, it is necessary that both sides
are equal to some (complex) constant, which will be denoted by —b?. Without
limiting the generality, the convention can clearly be made that —w/2 < argh <
n/2. Thus equation (3.11) is resolved into two equations:

%’—‘) +bx) =0 (.12)
and

2
Jlddf 2L+ (k2 - bP)gz) = 0. (3.13)
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If b differs from zero, the general solution-of equation (3.12) is
fx) = Ce* + Cyemitx | ' (3.14)
For b = 0 the general solution is
f(x)=Cox + C, . (3.15)

Here C,, C,, C; and Cy are constants. Let us not allow E, of formula (3.10) to grow
to infinity as x goes to +« or -«. C, must thus be zero, and if the imaginary part
of b does not vanish, C, and C, must be zero. In other words, only real, and
non-negative (because —n/2 < argh < w/2) values of b are acceptable and all solu-
tions of equation (3.12) are linear combinations of ¢’®* and e"*®*. The quantity
£h is actually the argument of the Fourier transforms of the source current and
of the fields with respect to the x-space-coordinate (see Section A.4).

Let us use the following notation:

K(z) =p2 _ k% (3.16)

and assume that

I

i
<. .
5 <argky <5 (3.17)
Because b and k, are real, it follows from condition (3.17) that
0, b >k,
X b <k,
The solution of equation (3.13) can be expressed as
g(z) = A4,e 0% + 4,7 0% (3.19)
for Kk, # 0 and as
gz) =Ayz + A, (3.20)

for k, = 0. Formula (3.18) shows that for b > k, the function ¢ “0% represents
a field which approaches infinity as z approaches minus infinity, i.e. when the
point of observation moves far upwards from the earth’s surface. On the contrary,

the function e*o? satisfies gim e“o* = 0. For b <ky, K can be written as i where
—+—o0
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a is real and positive, ie e“¢* 0% = ¢! (@*¥2) This means that the function

e 0o” belongs to a field whose phase propagation with respect to z occurs in the
+z-direction (downwards), while the propagation direction associated with e*o® is
upwards. Thus it seems reasonable that the z-dependence of the secondary field
shall be represented by e“o” both for b >k, and b <k,.

If b equals k&, the solution for the z-dependence is given by equation (3.20).
The function proportional to z could be rejected by stating that it grows infinitely
large as z approaches minus infinity, which is unphysical. On the other hand, an
integral over b will be composed later, and the value of the integral does not
change although the values of the integrand are changed at separate points (see
Section A.4 and the discussion after formula (2.66) in Section 2.5). Because of
this it could be argued that there is no reason to discuss the case b = k. We shall,
however, now avoid the special case k, = O entirely by assuming that &k, has a
(small) negative imaginary part. Physically this would be achieved by providing the
half space z < 0 (the air) with a (slight) conductivity ¢, and it is assumed to be
the case in this discussion. The conductivity is presumed to be constant with respect
to time and space. (A similar assumption of a very small conductivity has also been
made for example by SOMMERFELD, 1959, p. 160, in the treatment of a different
electromagnetic problem.) In reality the conductivity of the air differs from zero
and is of the order of 1074 !m™! near the earth’s surface (ISRAEL, 1971, pp.
95 and 249). If a non-zero conductivity is given to a medium the real part of its
propagation constant also changes as can be seen from equation (B.46). The
discussion that follows and in which expressions for the electromagnetic field
on the earth’s surface are derived, is in principle valid for any values of the
permittivity and of the permeability of the air. We, however, assign the correct
free space values €, and y, to these parameters. The assumption made about the
conductivity of the air and the definition of k by formulae (3.16) and (3.17)
imply that for all possible values of b both the real and the imaginary parts of «,
are positive. Consequently the function e*o?, with the time-dependence elwt s
connected with upward phase propagation and it approaches zero as z approaches
minus infinity. On the other hand the function €0’ indicates downward propa-
gation and approaches infinity as z approaches minus infinity. Therefore the
former function only is accepted, which is exactly the same conclusion as above
with a real value of k; and b # k.

The conductivity of the air also modifies the primary field discussed in Section
3.1. Referring to Section B.8 it is, however, evident that the expressions (3.5) and
(3.6) are formally valid for the electromagnetic field produced by an external (true)
current (3.1) in a conducting medium, if k is assumed to represent the correct
propagation constant including the conductivity. (The primary charge density that
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could in principle exist, but is assumed to be zero, would now not be time-inde-
pendent, but similar to formula (B.27).)

If the argument kyVx2 + z +h)? = kr, of the Hankel functions appearing
in the expressions of the primary field is so large that the asymptotic formula
(A.59) can be used for H(? and H{Y, both the primary electric field and the pri-
mary magnetic field are proportional to (kyr,) "'/ -e!(“*=%0%0). Thus owing to
formula (B.42) being valid for k,, the phase propagation of the primary field
occurs outward from the source current, and the conductivity of the air causes
exponential damping in the same direction. Formulae (3.7) and (3.8) show that
in practice, Le. for reasonable values of kr,, the primary electric field is only
affected by the conductivity of the air.

The general solution of equation (3.9) associated with a separation constant b2
is a linear combination of the products of all possible functions f(x) and g(z),
multiplied by the time factor e!*?, ie.

E,(x,2,1) = (D, e'P%e 0? + F, e 'b*e 0% )e! ", (3.21)

The coefficients D, and F,, are integration constants. In order to get a still
more general solution for E,, it is necessary to sum (integrate) over all possible
values of b (¢f MoRrsE and FesHBACH, 1953, p. 498):

E,(x,2,1) = e'' [ (Dy(b)e'™ + Fy(b)e™®)e o%db , 3.22)
0

in which the coefficients Dy, and Fy ) have been replaced by D (b)db and
F(b)db, respectively. The mathematical treatment becomes more convenient by
defining the unknown »integration constant» function D (b) for non-positive values
of b by the formulae:-D(b) = Fo(—b) for b <0, and D (b=0) = (1/2)(D 4(b=0) +
Fy(b=0)) where D(b=0) denotes the original value of D(b) at b = 0. The com-
ponent Ey can then be expressed as

E, (x,2 1) = &' [ D (b)e*o%e™®*db . (3.23)

The quantity « is defined by formulae (3.16) and (3.17) for negative values of
b as well.

The components B, and B, are obtained from equation (3.23) with the use of
formula (B.37):

— 1 — 1 oF 1 joF oF. ) 1 oF
——_y - Ty 5oy T2 Tx)s 2 Py oa
B iw X E iw 0z =7 e ( ax oz 1% G ax % (3.24)
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and hence
eiwt o8 . .
B (x.20) =~ | koDyb)e 0% e ab (3.25)
and
eiwt o .
B,(x,z,0) = vy J bDy(b)e*o%e*ap , (3.26)

Utilizing the discussion of Morse and FESHBACH, 1953, pp. 497—498 the con-
clusion may probably be made that all physical solutions for the secondary field
components £, B, and B, in the air are included in formulae (3.23), (3.25) and
(3.26).

Expressing the last Maxwell equation (B.38), with 0=0,, € = €, and u =y,
in component form similar to formula (3.24) we observe that the components £,
B,, B, and the components £, E,, B, constitute two independent sets of equa-
tions. Because the primary field has only the components E,, B, and B, let us
not include the components E,, E, and By in the treatment. The Vlatter could be
solved exactly analogously to the calculation of E,, B, and B, above.

It is mentioned in Section B.5 that the validity of Maxwell’s equations (B.35)—
(B.38) does not result from the validity of the wave equations (B.43) and (B.44).
Because the calculation above included the use of the wave equation for the elec-
tric field, it should now be checked that the electromagnetic field (E.y, B, B))
satisfies equations (B.35)—(B.38). Equation (B.35) is trivial because the derivative
d/dy is zero, the calculation of the magnetic field (formula (3.24)) involves the
validity of equation (B.37), the latter implies the validity of equation (B.36), and
finally it is easy to show the equation (B.38) results from the wave equation
(B.43) and equations (B.35) and (B.37) (¢f. Section B.6).

The electromagnetic field within the 7' layer of the earth satisfies Maxwell’s
equations (B.35)—(B.38) with o= 0 e=¢ and u =y (7 = 1,...,n). The solution is
obtained with the same procedure as the solution for the secondary field above.
However, the z-dependence of the separated solution for E,, is now different. Let
us make the reasonable assumption that the conductivity of the earth is every-
where non-zero. Then the special cases are excluded where one or more of the
quantities ;, corresponding to k, and defined by formulae

2= R (3.27)

and
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_r

3 (3.28)

<arg K; < % )
are zero. The parameter k; is the propagation constant of the j th jayer. It results
from formulae (3.27) and (3.28) and from the non-zero conductivities a]-(]'= 1,...,n)
that both the real and the imaginary parts Qf all factors K; are positive. To avoid
infinite growth only the solution €% is accepted in the undermost layer, i.e.
when j = n. In all other layers the z-dependence of E), includes both e'7* and 9%
Thus similarly to formula (3.23) the y-component of the electric field in the earth

has the expression

E(x,2,1) = &' [ (D(b)e'S* + G(b)e™9%)e™* db (3.29)
forj=1,..., n—1, and

E,(x,z, ) = ¢’ [ G (b)e*n*e™ db (3.30)

for the lowest layer j = n. Dl-(b) and Gj(b) are unknown integration constanty
functions. Equation B =—(1/iw)'Vx E now yields that

iwt =

e . s i
B (x,z,t) = i J 1(D;(D)e"i* — G (b)e™i)e ™ db (3.31)
and
eiwt bt .
B (x,z,t) = — ” [ b(Dyb)e i* + Gy(bye *i*)e™*db (3.32)

forj=1,.,n—1, and

iwt =

B (x,z2,t) = — eiw _f k, G, (b)e ™ n*eib* dp (3.33)
and

B,(x,z,1) = — ei:t ben(b)e-KnZe"bde (3.34)
forj=n.

Referring to MoRrse and FEsHBACH, 1953, pp. 497498, it can again be stated
that all physical solutions for the field components E,, B, and B, are obviously in-
cluded in equations (3.29)—(3.34). As in the case of the secondary field in the air the
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other three field components are notincluded in the treatment. The validity of
Maxwell’s equations with formulae (3.29)—(3.34) is evident. The present treat-

ment, as the discussion in Chapter 2, implies that no charges exist, even on the
surfaces of discontinuity (see Sections B.5 and B.7).

Before starting to consider the boundary conditions let us discuss the space-
and time-dependent functions appearing in the above expressions for the field.
Since both the real and the imaginary parts of all factors ; ¢G=0,1, .., n) are
positive and b is real, the function e’ *?¥)*&;z
attenuation in the negative z-direction and with respect to x no attenuation occurs.

For b = 0 the phase propagation with x disappears. Similarly the function
ei(wt+bx)—lcjz

involves phase propagation and

is associated with phase propagation and attenuation in the positive
z-direction. If the conductivity of the medium in question were zero, either phase
propagation or attenuation, or both when k; =0, would vanish with respect to z.

" The solution proportional to z (equation (3.20)) involves no phase propagation.
So, taking into account the discussion above of the behaviour of the primary field
for large values of kg, no case where the directions of phase propagation and
attenuation with respect to a space-coordinate are opposite appears in the present .
discussion. Such cases will be discussed in Chapter 4.

Here we have discussed the phase propagation, but it is the direction of energy
flow, i.e. the Poynting vector, that is more significant (see the end of Section B.9).
The Poynting vector for transverse magnetic cylindrical electromagnetic fields,
which are independent of the cylindrical ¢-coordinate, is discussed in Appendix C.
The conclusions observed there are also applicable to similar planar fields. However,
the integrands, associated with a value of b, of the secondary field in the air or
of the field in the earth do not compose fields of this type. So the discussion of
Appendix C is not available, and a new treatment of the Poynting vector would
be needed. Such a treatment would show that the energy of the field associated
with a fixed value of b flows in the direction of phase propagation on average.
However, in the investigation of the Poynting vector of a field represented as a
sum (or integral) the individual terms of the sum cannot be considered separately,
as otherwise the cross terms in the Poynting vector vanish. Finally, concerning
the primary field of this chapter the discussion of Appendix C is applicable with
the longitudinal propagation constant equal to zero.

According to Section B.7 the tangential components Ey and H_ =B /u are
continuous at the boundary surfaces z=0,z=z, =h;,z=z,=h, + h,,..,z=z |~
hy +h, +..+h, . Therefore equations (3.5), (3.6), (3.23), (3.25), (3.29),
(3.30), (3.31) and (3.33) yield that
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Wiy
— Z" HP(k VX2 +h?) + fD (b)e'®*db = f(D (b) + G, (b))e®*db
(3.35)
and
ikoht b .
— e H®(kVx? +h2) + [ ko Dy(b)e™®™ db = (3.36)

4\/ 2+p2 ATI

[ K, (D, ()G, (b))e™*db

Il

for z = Q,

| @yb)e"ii + Gy(b)e ™ i*iYe ™™ db = [ (D, (b)e"i*1% +G;,, (b)e i+ 1% )e P db
- - (3.37)

and

oo

KiZi ~K;iZ\ ,ib —
oot _D{ 1;(D;(b)e" 1% — Gy(b)e™ i*)e™™ db = oo

[ Ky Doy (B)e*i+1% +
1

3.38
I+1(b)e-K]+1z])etbxdb ( )

forz=z. where j = 1,..., n—2, and

f(Dn l(b)e"nwlln—l + Gn l(b)e'Kn lzn_l)elbxdb — fG (b)e KnZp— leszdb
- (3.39)

and

lwun_ l K1 (Dy_ (b)en—1%n-1 — G (b)e*n-1%Zn-1)eP3gp = (3.40)

"KnZp—.1,ibx

zw,un fk L(B)e “nFn—1¢0%gp
for z = z__,. Equations (3.35)—(3.40) have to be valid for all values of x. The
common time factor €“’* has been divided out from these equations. Notice that
the exact formulae (3.5) and (3.6) are used for the primary field, not the approxi-
mative (though valid) formulae (3.7) and (3.8).

Utilizing formulae (A.4) and (A.6) it follows from equations (3.37)—(3.40)
that
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Dy(b)ei% + G(b)e ™7 — Dy, (D)eI*1%] — G, (B)e* i1 = 0, (3.41)
and
5D (B)e 7 — LG (b)e T — I D (5)e 1 + L G (5)e i1 = g
w w o, It ey T

o
! ! (3.42)
G=1,.,n-2), and

D _(b)en—1% =1 4 G (b)e*n-1%n-1 _ G (p)e“n?n-1 = (3.43)

and

SElp ettt < Bl g ettt 4 20 G (p)e et = .
Mp—1 Hn g Fn

(3.44)
These equations are valid for all real values of b, and for each b they constitute
a set of 2n—2 linear equations, which involve 2n—1 unknown integration constants.

So one of the unknowns, for instance G,(b), can be regarded as known and all of
them obtained in the forms

Dy(b) = ay(b)G, (b) (3.45)
and
G,(b) = B;(b)G,(b) (3.46)

(7 = 1,..., n). The coefficients o;(b) and Bj(b) depend on the electromagnetic pfoper—
ties and the thicknesses of the layers of the earth. (o, (b) = 0 and §,(b) = 1.)

It follows from formulae (3.29), (3.31) and (3.45) that the tangential compo-
nents of the electromagnetic field at the earth’s surface on its lower side are

E,(x,z=0,8)= | E(b,x t)db 3.47)
and

B.(x,z2=0,f) = [ B (b,x, t)db (3.48)
where

E (b, x, 1) = G (D)(e; (b) + 1)e™P*e!! (3.49)
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and
B (b,x 1) = G, (b) % (o, (B) — 1)eP*ei =y H (b,x,1)) . (3.50)

Let us define the surface impedance Z(b) at the earth’s surface by

Z(b) = — M — Ey(b» x, ) ey 14 a,(b)

HGxn MBoGxH & 1-ad)

(3.51)

Because all quantities K; are even with respect to b, equations (3.41)—(3.44) are
identical for +b and —b, and so () = o (-b) and B(b) = ﬁj(—b) and further

Z(b) = Z(—b) . (3.52)

SRIVASTAVA, 1965, and ALBERTSON and VAN BAELEN, 1970, referring to
Srivastava, give this surface impedance a more complete formula in the sense that
they do not introduce any quantity, like a, (b) above, which is not expressed ex-
plicitly in terms of the parameters of the earth. But their formula assumes that
the permeability in every layer equals the free space permeability, and that the
displacement currents can be neglected, ie. 0; > we;. In Srivastava’s analysis the
ratios —Ey/Hx and Ex/Hy are both equal to Z(b), denoted by Z(0). However, if
the components E,, E, and B, were treated in the same way as E,, B, and B,
above in the present discussion, the ratio E, (b, x, t)/Hy(b, x, t), denoted here by
Z'(b), would have the following expression:

sy -1 L)

o, tiwe, 1+a,()’ (3.53)

where o) (b) is obtained from «, (b) by replacing the quantities —lwy; by o; + fwe;
( = 1,..., n). This substitution, which is a consequence of the symmetry of the

field vectors £ and H in Maxwell’s equations (B.35)—(B.38) (B = ufl) and in the
boundary conditions, was also utilized when concluding the coefficient /(v +icwe,)
in equation (3.53) from the factor iy, /k, in formula (3.51). Since Z(b) and

Z'(b) are'not equal either when M; = po and o; > we;, the present discussion ap-
parently contradicts Srivastava’s treatment, which might even be considered more
general thanks to the possibility of y-dependence. The discrepancy is, however,

due to the difference in the assumptions: Srivastava assumes that EZ for the value

of b in question is zero within the earth. In the present analysis the starting poin't

is that the derivatives 8/dy vanish. As seen, these two different assumptions yield
the same value for the ratio *Ey/Hx but different values for Ex/Hy. If in the
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present treatment b is zero, which mieans that only z-space-dependence occurs
(plane waves), E, is necessarily zero (see Section B.6), and so Z'(b) must equal
Z(b). The fact that the case is really so is seen from Chapter 2 and may also be
concluded with the substitution » = 0 into formulae (3.51) and (3.53).

In the same way that equations (3.41)—(3.44) were obtained from formulae
(3.37)—(3.40) it follows from equations (3.35) and (3.36) that

iy ¢ kol
Do) — (1 + ;NG (0) = —-— — (3.54)
0
and
X0 p o) + L (1 - a,(B)G,(b) = — 1 g (3.55)
Mo 0 My 1 1 47 .

where formulae (A.72), (A.75) and (3.45) have been employed. As mentioned,

the small negative imaginary part of k, ensures that k= \/bz—ko2 differs from
zero for all values of b, and thus the right-hand side of formula (3.54) remains
finite and well defined. The use of equations (A.72) and (A.75) does not demand
a positive real part for ik,, but the case Re(iky) = 0, i.e. Imk, = 0, is also allowed.
(k, must, however, differ from zero.) The quantities D(b) and G,(b) can be
obtained from equations (3.54) and (3.55). The latter will not be used in this
discussion, and the former has the expression

iopgle " ko Z(b) — iy,
dmk KoZ(b) + i’

Dy(b) = — (3.56)

where formula (3.51) has also been utilized.

We obtain from formulae (3.5), (3.6), (3.23), (3.25), (3.26), (3.56), (A.40),
(A.74) and (A.76) the following electromagnetic field components at the earth’s
surface on its upper side:

e oy ST
By (5, 8) = — 25— HP(eg/x? +1%) (3.57)
iwopgle’ =t = e ot KoZ(b) — iwp,

ibx
a3 T 2 ®) ey ¢ P

: ot - ~koh
__ wuget! Z(b)e ™ 2% gp
2n o KoZ(b) +iwuy
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iugkohJe’ —
BMx(X, f) Z—W Hl (kovx +h ) (358)
_ pgleiet fe"‘oh KoZ(b) — iwp, 2% gp
dn KoZ(b) + icwu,
_ iwplJe!wt = ot oi5% 15
2 o KoZ(b) + ieop, ’
and
_ Iugkgx e, Vil T2
By, (x, ) = W T H(kyVx? +h?) (3.59)

ingle’@t = be™o"  Z(b) — i,
47 Ko  KoZ(D) + i,

—c0

eibxdb

ipgle!t = bZ(b)e*o”

ibx
g2y + iy ¢

When deriving formula (3.59), the derivative of equation (A.74) with respect to u
was used changing the order of the derivative and of the integral. This can be shown
to be acceptable. The treatment of the components £, E, and B, was neglected
above. As indicated, the discussion about them would be completely independent
of the treatment of E,, B,, B, and they would not be coupled to the primary
field. Hence, we conclude that E,, E, and By are zero everywhere, and so for-
mulae (3.57)—(3.59) really represent the whole electromagnetic field.

Equations (3.57) and (3.58) show that the ratio of the integrands of £ My and
of By, including the coefficient before the integration sign is equal to —Z(b)/uq.
Therefore the surface impedance, whose definition (3.51) was connected with the field
inside the earth, is for each b equal to the negative ratio of the perpendicular y-
and x-components of the electric field and of the magnetic field intensity, respect-
ively, at the earth’s surface on its upper side. This is not surprising, since according
to formulae (3.54) and (3.55), i.e. according to the continuity E, and H,, the
quantities Ey(b, x, t) and H, (b, x, t) =(1/u,)B,.(b, x, £) given by equations (3.49)
and (3.50) are equal to the integrands of the b-integrals representing E, and H, =

(1/ug)B, at the earth’s surface on its upper side. These integrals, like all b-integrals
in this work, are Fourier integral representations in x.

The surface impedance Z(b) only depends on the properties of the earth, and

it is obtained by assuming a harmonic time-dependence and by setting the deriva-
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tives 9/dy equal to zero. (According to the discussion after formula (3.52) it is
obvious that the same surface impedance would have been obtained without the
presumption 8/dy = 0, if E; for the value of b in question is assumed to be zero
within the earth.)

Utilizing equations (3.16), (3.52) and (A.29) formulae (3.57)—(3.59) describing
the electromagnetic field on the earth’s surface can be rewritten as

iopgJert = Z(b)e "

E =— )
uy(*: 1) - 2 koZ(b) + oty cosbxdb , (3.60)
22wt -Koh
_ iwugJe e o
By (x, 1) = - Of <oZ0) ¥ oy cosbxdb (3.61)
and
: Je't = bZ(b)e ™ o"
By, () =—H" | (b)e sinbxdb (3.62)

7r o KoZ(b) t+ iwu,

These equations show that Eyy, and By, are even and By, odd in x, so that in
this respect the total electromagnetic field has the same properties as the primary
field (equations (3.5) and (3.6)). It was assumed above that k, has a non-zero
negative imaginary part, i.e. that the air is slightly conducting. The conductivity
can be arbitrarily small (but positive), and so equations (3.60)—(3.61) express the
electromagnetic field on the earth’s surface in the case where the properties of the
upper half-space are arbitrarily near those of free space. Because »physics is con-
tinuousy, it seems evident that in the limit where the conductivity of the air ap-
proaches zero formulae (3.60)—(3.62) give the electromagnetic field for free space,
and this limit is obviously achieved with the substitution k; = w\/uq€,.

If equations (3.60) and (3.61) are compared with the results obtained by
ALBERTSON and VAN BAELEN, 1970, a difference is observed. These authors have
the variable of integration in place of k in equations (3.60) and (3.61). Albertson
and Van Baelen assume in their discussion that the upper half-space is free space
without any conductivity, but this is not, of course, the reason for the difference.
As mentioned in Section 3.1, the propagation constant &, is small for frequencies
significant in connection with geomagnetic variations. This statement is not made
invalid by the small conductivity of the upper half space. Hence the quantity Ko =
Vb2 — k% can be approximated by b for all but very small values of 5. The inte-
gration in formulae (3.60) and (3.61), however, starts from » = Q. Therefore it is
not in principle allowed to replace k, by b in them and so make them similar to
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Albertson’s and Van Baelen’s equations. The approximation included if this »for-
bidden» substitution is made will be discussed later in a special case. -

As indicated, the treatment of the functions H§?(kgVx2 +h2 )(—k Jh/\/X2 +h2).
H1(2)(k0\/x2 +h?) and (—kyx/\V/x2+h2) H1(2)(k()\/x2 +h2) in the derivation of
equations (3.54) and (3.55) and in formulae (3.57)—(3.59) involves the expression
of the primary electromagnetic field at the earth’s surface as a Fourier integral
with respect to x (see formulas (A.72) and (A.74)—(A.76)). The primary source
current (3.1) also has a Fourier integral representation with respect to x, and the
treatment of the electromagnetic field connected with a particular value of b ac-
tually means the consideration of the influence of the corresponding Fourier com-
ponent of the source current (¢f. the principle of superposition in Section B.10,
see also Chapter 5). Hence every partial field associated with a certain value of b
has a clear physical meaning, though b (or —b?) appeared in the discussion as a
purely mathematical separation constant of equation (3.11). It was therefore
quite reasonable to demand physically acceptable behavior of every partial electro-
magnetic field, as was done above.

The Fourier integral representation with respect to x for the primary electro-
magnetic field is also implicit in ALBERTSON’s and VAN BAELEN’s, 1970, calcula-
tions. They assume that the approximate expression (3.8) for the primary mag-
netic field is valid, which allows this field to be expressed as the negative gradient
of a magnetic scalar potential. The Fourier and inverse Fourier (sine) transforms
of this potential are given explicitly by these authors.

As mentioned in Section 3.1, formulae (3.7) and (3.8) can be used for values
of w,x and z+# feasible in connection with geomagnetic induction. But the use of
formula (3.8) in a Fourier transform with respect to x, where integration goes to
infinity, in principle requires that ¢ is zero, which in turn means that the electric
field (3.7) vanishes. The error, which is caused for w # 0 in Albertson’s and Van
Baelen’s discussion, is equivalent to the substitution of b for k, in the discussion
above. If we try to integrate the Fourier integral representation of the primary
electric field included implicitly in Albertson’s and Van Baelen’s treatment, we
find difficulties, because the integral does not converge, but has an infinite value.
This integral is, however, multiplied by a factor proportional to w, which, as
stated, should in principle be zero. The result is then exactly the same as equation
(3.7) with «w = 0, as can be expected. Similar »inaccurate» Fourier integral ex-
pressions for the primary magnetic field or its scalar potential, which in any case
yield the magnetic field very accurately for reasonable values of w, x and z+5,
are also represented for instance by Prick, 1962, HERMANCE and PELTIER, 1970,
and HERMANCE, 1978.
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An expression for the potential difference between two points P, = (x,,¥,, 0)
and P, = (x,,y,, 0) at the earth’s surface is obtained using the convention made
in Chapter 1 and equation (3.60). It is

P P.

2 _ _ 2
Up p,@®) = [ Ep-dl= [ Ep(x, dy (3.63)
P .lviz;t;gight Psl

_ depg(ry —y Wett = Z(b)e ot _ ‘
B MG, —x,) o D(koZ(b) + iy inbx, — sinbx,)db .

As in Section 2.2, this equation gives the potential drop from P; to P,. If x,; and
X, are equal, the potential difference Up, p, i simply

Up p, () = (13— ) Eppp(%. ) (3.64)

_ dong(y —y et f Z(b)e "

11 o KoZ(B) +iwu,

cos bxdb ,

where x is the common value of x, and x,. The primary current Je'“? can be
solved from equation (3.61) or equation (3.62) as a function of a magnetic field
component on the earth’s surface. Hence the potential difference Up1 P, is express-
ible in terms of the magnetic field (cf. equation (2.36)). The physical electric field
and the physical geomagnetic variation on the earth’s surface and the physical
potential difference between P, and P, are, according to Section A.1, expressed
by the real parts of equations (3.60)—(3.63).

3.3 Induction in a homogeneous carth

If the earth is assumed to be homogeneous (with o, €, u, k and x) the impedance
Z(b) is

Z(b)y = i‘;—“ (3.65)
as can be seen from the definition of Z(b) (3.51) and equations (3.30) and (3.33),
which describe the field in the only layer. Substituting equation (3.65) in equa-
tions (3.60)—(3.62) we obtain:

. i w ~Knh
iwpgle'™t = o

By &0 = — cos bxdb , (3.66)

m o Ko tx
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pele’@t = ge*o
Bypx, 1) =—— ({ P cos bxdb (3.67)
and
poJe’ @t = pekoh
By, (x, 1) =— - S T sin bxdb . (3.68)

The potential difference given by equation (3.63) has the following formula for a
homogeneous earth:

Wt o ~Koh

_ iy —y)le €
(X, —x,) o by + 1)

Up,p,() = (sinbx, —sinbx )db.  (3.69)

The expressions (3.66)—(3.69) presume that y and p,, are equal. Unless this assump-
tion were made, By, (x, £) of equation (3.67) should be multiplied by Molu and
the denominator of the integrands of equations (3.66)—(3.69) should be replaced
by kg +ugr/u

Let b, be the smallest value of b for which the approximation Ko = b is accept-
able. According to the discussion in Section 3.2 b, is very small for frequencies
significant in connection with geomagnetic variations. Therefore for 0 < b < b,

and for reasonable values of the geophysical parameters the following approxima-
tions are valid: e ~ 1, 0" ~ 1, b+k ~k (= ik), ko Tk &~k (= ik). Hence

o Kol by o Koh
cos bxdb =
+K J

~Koh

cosbxdh + [ %

i o ko VK cos bxdb (3.70)

o Ko
-bh

by w

s se

~g p cosbxdb+l;|' b e
a

cos bxdb

bg . -bh

zb[b-Hc

-bh «  -bh
5 cos bxdb = f se
b+« 0

b+«

cos bxdb .

cosbxdb + [
ba

Substituting 1 and « for s the integrals (3.66) and (3.67) can be approximated
respectively, and if s equals b and cos bx is replaced by sin bx, an approxima-
tion for equation (3.68) is obtained. Hence approximately

iquJei‘*’t f e

o Dtk

By, 0, 1) = — cos bxdb , 3.71)
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B i N 3.7
s 6 1) = T ) b« cos bx 3.72)
and

TR eiwt o be‘bh
By, G, 1) = — = OI o sinbxdb . | (3.73)

(Equation (3.69) could also be approximated correspondingly.) So the formulae
where k, has been replaced by b in equations (3.66)—(3.68) have been »derived»
or rather made believable in a mathematically very inexact way.

Law and FANNIN, 1961, discuss the same approximation of EMy with their
own notations in an appendix. According to their result a typical error in a practi-
cal case could be 0.1 %. PARK, 1973, also makes the corresponding approximat-
tion referring to Law’s and Fannin’s, paper. Law’s and Fannin’s evaluation, how-
ever, contains three errors: 1) The last term in their formula (20) should have A?
instead of j4. 2) The last term in formula (21) should have A? instead of A.

3) Even if formulas (20) and (21) were correct, the calculations of the error at
the end of their appendix gives a result which is four times too large. By correct-
ing the first two errors, we can see that the calculation should yield equal éx-
pressions for both the true and the approximate integral. To obtain a difference
an additional term proportional to log4 would have to be included in the expres-
sion for the true integral. If the calculation is then made correctly, the error of
the approximation is found to diminish at least to one tenth of that given by Law
and Fannin.

On the other hand, this error, as well as Law’s and Fannin’s vincorrect error,
concerns only the part of the integral where the approximation is greatest and
not the whole integral. In order to get reliable information on the validity of an
approximation the final approximated result should always be compared to the
original exact expression. Approximating each term in a sum separately or making
approximations in several steps may lead to incorrect results. Direct comparison
between equations (3.66) and (3.71) is possible by means of the discussion pre-
sented in Law’s and Fannin’s appendix and formula (3.74) below. The error
depends on many parameters and is thus quite complicated for general evaluation,
but for example with w=1s"1 the comparison indicates typical values less than
the order of 0.01 % which are really negligible.

Expressing 1/(b + &) as (1/k*)(b—+/b2—k2) and using formula (A.81) equation
(3.71) can be written as
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icopgle'? [ Y, (ke + ih)) — H, (k(x + ih))

(6, 1) = =2 o (3.74)

Y, (k(—x +in)) — H, (k(—x +ih))  4(x2—h?) ]
* B t e Ty

where Y, is the Neumann function of order one and H, is the Struve function of
order one (see Section A.6). It follows from equations (3.71)—(3.73) that

1 By, pede’t  h

By (%, 1) = — 3.75
Mx( ) lw ah T h2 +x2 ( )
and
1 0E,,,(x, 1) )
By (i) ==~ ——MéxL (3.76)

Formula (3.76) is satisfied by the exact expressions (3.60) and (3.62), whose
special cases are equations (3.66) and (3.68). Law and FANNIN, 1961, and PARK,
1972 and 1973, also express the field in terms of the Struve and Neumann func-
tions.

Let us now return to the exact formulae (3.66)—(3.68) for the electromagnetic
field on the earth’s surface. Then

11m Ey, L0 0) = .77

zwt e

f e “o® cos bxdb (3.78)

. Mo
i Bt )=

iugkohte' @ Sy
—2x— '74—_—}17 Hl (ko'\/x +h)

and
(}Lnl By, (e, )=0. 3.79)

The limit 11m k = oo has been utilized here, and equation (A.76) has been em-
ployed in fhe derivation of equation (3.78). Equations (3.77)—(3.79) could be
directly determined using the principle of images. It states that the electromag-
netic field outside (or at) a perfectly conducting surface due to a source outside
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the surface can be calculated simply by imagining an opposite source on the other
side of the surface and removing the surface(see e.g FEYNMAN ef al, 1964, pp.
6—8-6—11, STRATTON, 1941, pp. 193—194 and pp. 582—583, UmAN, 1969, pp.
48-61). In the case in question the image source is an opposite line current ]"lm =
—Je't §5(z — h)8(x)¢, at depth h below the earth’s surface (cf KELLER and
FRISCHKNECHT, 1970, p. 300). It follows from equation (3.78) that

pohs

lim (lim By, (x, ) = —— -
m(x

W0 “g—>ee + h2) (3.80)

and ac.cordin.g to equations (3.77) and (3.79) the double-limits 01)1—% ((}i_)rg By (x, 1)
and ‘})1_% (}gg By, (x, t)) are zero.
Let us take the limit processes in equations (3.66)—(3.68) in reverse order: first

‘}’1_1)% EMy(x, H=0, (3.81)
J o nJ
lim By (x, ) = Bol ¢ gbhgosbxay = — 0% (3.82)
w0 X 2 2n(x? +h?)
and
. kT M
lim By, (1) =— S Of &b sin bxdb = et ) (3.83)

Since the right-hand sides of formulae (3.81)—(3.83) do not depend on o, they
also represent the double-limits (}}érg (cLi—IPo ). The right-hand sides of equations
(3.81)—(3.83) are equal to the value of the primary field in the limit where w
goes to zero (see equations (3.7) and (3.8)).

So the value of the magnetic field in the limit where the conductivity of the
earth approaches infinity and the angular frequency approaches zero depends on
the order of the limit processes. Similar situations were also mentioned in Section
2.6. This »peculiary behaviour seems to show that the solution of the problem of
a horizontal line direct current above a perfectly conducting half-space is not un-
ambiguous. The results could be interpreted as follows: if the conductivity of the
earth approaches infinity, the current induced within the earth shrinks to a surface
current. In the limit where the angular frequency approaches zero this surface
current becomes a non-zero direct current thus affecting the magnetic field. If, on
the other hand, c first approaches zero, the primary electric field and the current
in the earth vanish and the earth has no influence on the electromagnetic field.
The second limit, where ¢ approaches infinity, does not help the situation. The
analogous phenomenon could be revealed in the case of a plane wave primary
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field, too.

The assumptions of finite conductivity of the earth and of positive angular
frequency at the beginning of this section, of course, do not prevent the limits
o—>e and w0 being taken. Let us point out that the limit processes in formulae
(3.77)~(3.79) and (3.81)—(3.83) are simply performed by taking the corresponding
limits of the integrands of equations (3.66)—(3.68). The justification of the use
of such a method is not proved mathematically here. The only proof is that the
results obtained are, according to the above interpretation, physically reasonable.

3.4 Induction in an earth having arbitrarily changing properties in the vertical
direction

When dealing with the induction associated with a plane wave primary field it
was seen in Section 2.7 that the relationship between the magnetic field and the
electric field on the earth’s surface is expressible in terms of a surface impedance
for every vertical variation of the electromagnetic properties of the earth. The
surface impedance only depends on the structure of the earth and, of course,
changes as the dependence of the electromagnetic parameters o, ¢ and u on the
z-coordinate changes. This suggests that formulae (3.60)—(3.64) might also be
formally extended to any vertical variation of the properties of the earth. As in
Section 2.7 let us, however, assume that the conductivity is everywhere finite. As
above, the primary electromagnetic field is expressed by equations (3.5) and (3.6)
and the secondary field in the air by formulae (3.23), (3.25) and (3.26). Both involve
the assumption of a (slight) conductivity of the air.

The electromagnetic field inside the earth must be calculated by utilizing the
more general Maxwell equations (2.93)—(2.96). Taking into account the fact that
no y-dependence occurs, equation (2.98), which is a consequence of formulae
(2.93), (2.94) and (2.96), yields for the y-component of the electric field

2 2
8*1;72 ﬂil_ld_ﬂﬁ@uszy:O. (3.84)
ox 0z u dz 0z
This equation can be solved analogously with the treatment of equation (3.9), ie.
using the separation of variables. The x-dependent differential equation will be
exactly the same as formula (3.12), and so is its treatment. The z-dependent
equation, however, now has the form

S-SR L (k2 - b =0. (3.85)
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Equation (3.85) is a linear and homogeneous differential equation of the second
order with respect to z. All its solutions are linear combinations of two linearly
independent solutions, denoted (for example) by g;(z) and g; (z). As in Section
2.7, the dependence of u and o +iwe on z should be known precisely in order
that the functions g,(2) and g (z) could be studied thoroughly, and so all discus-
sion of the directions of attenuation and of phase and energy propagatiens with
respect to z is omitted here. (The comments made in Section 3.2 concerning the
x-dependence are, of course, valid.)

The general solution for £, is again clearly obtained by integrating over b (MORSE
and FESHBACH, 1953, pp. 497—498). Equation (3.85) shows that g; (z) can be regarded
as equal to g% (z) for negative values of b, and so the extension is, as in Section
3.2, possible for negative values in the integration. Hence

B (x,2,1) = ' f (D(b)g;,(2) + G(b)g}(2))e™*db . (3.86)

Equations (2.93) and (3.86) yield that

iwt o
H (x,2,t) = jwu { ( () ‘SZ,’()-FG(b) ‘2’( )) xgp (3.87)

and

bxp (3.88)

Maxwell’s equations (2.93)—(2.96), with the assumptions made, do not couple

the components E_, E, and Hy to Ey, H, and H,, and, as in Section 3.2, the
former are considered to be zero. The validity of equation (2.93), which causes
formula (2.95) to be satisfied, was included in the above calculation of H,, and H,.
Equation (2.96) is trivially satisfied by (Ey, H_, H,), the right-hand side being
equal to zero. The total volume charge density in the earth is thus zero, and ac-
cording to formula (2.97) so is all kind of volume charge. No charge can exist on
the planes of discontinuity, including the earth’s surface, either, because £ and D
are parallel to the xy-plane (see Section B.7). Finally the validity of formula (2.94)
is a consequence of equations (2.93), (2.96) and (2.98).

Let us assume that the earth consists of n horizontal regions in each of which
the properties of the earth vary continuously with respect to z. The solution (3.86)—
(3.88) has to be obtained separately for each layer. The functions g (z) and £,(2)
are different in different regions, which could be recognized by denoting g;b(z)
and g;,(z) (7 = 1,..., n). It again seems reasonable to accept in the undermost layer
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only one fixed linear combination of the possible z-dependencies, say gl‘;(z). The
solutions for different regions are coupled by boundary conditions, whose total
number is 2n—2. The boundary conditions are treated in exactly the same way as
formulae (3.37)—(3.40) in Section 3.2. So for each b 2n—2 equations involving
2n—1 unknown (D (), G,(b), D,(b),...,G,_,(b), G (b)) are obtained. They
yield the solutions

Dy(b) = 7,(b) G,(b) (3.89)
and
G,(b) = & (b)G, (b) (3.90)

(/= 1,..., n) analogously to formulas (3.45) and (3.46). If E, and H, at the earth’s
surface on its lower side are expressed as equations (3.47) and (3.48), E,(b,x,1)
and H, (b,x, f) have to be defined as

E(b,x,1) = G, (b)(v;(b)g; + g5)e'P e'v? (3.91)
y 1 1 b b
and
H Gl(b) ~t +1y ,ibx iwt
(byx, 1) = oot (v,(D)g + g, )ee (3.92)
1

where g, g3, g, and g;' are the values of the functions g} (z) and &,(2) connected

with the uppemost layer of the earth and of their derivatives at z = 0 and My is

the value of the permeability u(z) of the earth at z = 0. The surface impedance

is now

Z(b) = — LexD —icwop M (3.93)
H (b, x, 1) Uy, ()gy 8

It is only a function of the properties of the earth and is obtained assuming a
harmonic time-dependence and no y-dependence. Since the functions g;(z) and
&, (2) are even with respect to b, the quantities v;(b) and £i(b), especially v, (b),
have the same property. This further implies that equation (3.52) is also satisfied
by the present surface impedance (3.93).

The boundary conditions at the earth’s surface are the same as equations (3.35)
and (3.36) if their right-hand sides are replaced by formulae (3.86) and (3.87),
respectively, with z = 0 and omitting the factor e*?. The boundary conditions
yield two equations identical to formulae (3.54) and (3.55) with —(v,(b)g;, +
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£3)G (D) and (—1/u)(v,(b)g; + g )G, (b) substituted for —(1 + a;(8))G,(b) and
f(;{l/ul)(l— a,(b))G (D), respectively. The equations.so obtained combined with
formula (3.93) give the solution (3.56) exactly. This proves that equations (3.57)—
(3.59) are formally correct for any vertical variation of the electromagnetic param-
eters of the earth, and the validity of formulae (3.60)—(3.64) can then be shown
as in the discussion in Section 3.2. So the »guessy made at the beginning of this
section was correct. Notice that the discussion about the conductivity of the air
after equations (3.60)—(3.62) is also true in the present more general case.

Let us still consider the ratios of the integrands of formulas (3.57)—(3.59)
associated with a fixed value of b, ie. the ratios of the Fourier components of

EMy, B,,. and By, . They are

Ey,(b,% 1)  Zb)

By (x,t) oy oy
Ey, (b, x, 1) __w (3.95)
By, (b,x, 1) b

and

By (b, 1) wug (3.96)

By, (b,x,£)  bZ(b)"

Since Z(b) only depends on the properties of the earth and on the assumptions
of harmonic time-dependence and of no y-dependence, the ratios (3.94)—(3.96)
are independent of the properties of the air and of the primary source, if the per-
meability of the air at the earth’s surface is denoted by u,. The last requirement
is not needed for equation (3.95), which, in fact, is valid everywhere, not only
on the earth’s surface (see formulae (3.24) and (A.9)).

An impedance, whose dimension is »ohmp, is always obtained when an electric
field component is divided by a (non-zero) magnetic field intensity component.
So the concept of impedances is acceptable for any space- and time-dependencies
of the fields and not only in the cases discussed.

The electromagnetic field caused by an infinitely long line current oscillating
harmonically with time was treated above assuming that the electromagnetic
parameters of the earth, described by the lower half-space, are arbitrary functions
of depth. In Section 4.7 one more possible generalization is included.
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4. Induction in the case of a line current primary source oscillating harmonically
in time and space

4.1 Description of the model

As in Chapters 2 and 3, we describe the earth as the lower half-space and the
earth’s surface as an infinite plane. The upper half-space, the air, is originally
assumed to behave electromagnetically as free space, but later in this chapter the
air will again be provided with some conductivity. The primary source of the
electromagnetic field is assumed to be a similar infinitely long (true) straight line
current as in Chapter 3, which is thus situated parallel to and at some height
above the earth’s surface in the air and which oscillates harmonically with time,
but in addition it now has a harmonic space-dependence along the line as well.
Let us also at first allow the possibility of exponential attenuation and growth
along the line, which, however, has to be rejected later. The space-dependence in
the direction of the current necessarily implies the existence of primary (true)
charge (see equation of continuity (B.18)).

The same Cartesian coordinate system as in Chapters 2 and 3 is again used, ie.
the x- and y-axes point northward and eastward, respectively, the z-axis points
downward, and the earth’s surface is the plane z = 0. Let us assume that the
primary current flows in the direction of the y-axis in the plane x = 0, so that
the expression of the current density is

7 =Jel @t sz + h)s(x)e, | 4.1)

where J is a complex constant yielding the magnitude and the phase of the current,
the 8’s are delta functions (equations (A.3) and (A.4)), A (>0) is the height of

the current from the earth’s surface and « (>0) is the angular frequency. The
constant parameter g implying the space dependence along the current can be
called a longitudinal propagation constant. As mentioned, exponential attenuation
and growth in the y-direction is also possible, and thus ¢ is complex. If both the
longitudinal phase propagation and the longitudinal damping take place in the
positive y-direction, the following condition must be satisfied:

m

2

——-<argg <0. 4.2)
In fact for argg = —n/2 and argq = O there is no propagation or attenuation, re-
spectively.

It follows from the equation of continuity (B.18) that a (true) charge density
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p =L Jel@ s + ns(x) (4.3)

is associated with the primary source current (4.1). In addition there could be a
time-independent primary charge, which would not be coupled to the current, but
let us assume that this is not the case (cf. Section 3.1). It was indicated above
that a non-vanishing conductivity will later be assigned to the air. This conductivity,
denoted by o,, changes the form of the equation of continuity (B.18), a conse-
quence of which is that the coefficient g/cw in formula (4.3) is replaced by
q/(o.:-—ia0 /€,), and the possible additional charge, which is, however, assumed to
vanish, would be exponentiaily damping with time (see equation (B.27) and Section
3.2).

If g is not purely real, the primary source current and charge are exponentially
infinitely large at y = —oo, which involves an unphysical idealization. This infinity
comes in addition to the infinity caused by the delta functions. There is also a
transverse discontinuity of the source current and charge (cf. Section 3.1).

The line current and charge have an east-west orientation, but as in Chapter 3,
a suitable rotation of the coordinate system permits the treatment which follows
to be used in the discussion of any direction of the primary source parallel to the
earth’s surface.

The problem will again be treated in the same way as in Chapters 2 and 3:
The primary electromagnetic field will first be calculated, and the unknown con-
stants appearing in the expressions of the secondary field above the earth and of
the field within the earth, which are solved from Maxwell’s equations, will then
be coupled to each other and to the primary field by boundary conditions. Again
there seem to be different ways of calculating the primary field. In the next sec-
tion we shall consider the second way mentioned in Chapter 3 where the primary
source current and charge initially have a finite thickness which then goes to zero.
In Section 4.3 direct integration is performed over the primary source.

4.2 Calculation of the primary field using the »tube» method

Let us denote the finite thickness of the primary source by « and use a cylin-
drical coordinate system (p, y, z) with the z-axis along the axis of the current and
charge »tubey and é\z pointing in the same direction as 'e\y of the original coordi-
nate system. The (true) source current can then be expressed as

2

J R
l_ et(wt—qz) e, o<ua
a

]_'_= 4.4)
0, p>a.



62 Risto Pirjola

The (true) charge density associated with this current and corresponding to for-
mula (4.3) is now

qJ

na? w

b, = 4.5)
0, p>a,

ei(wt—qz) , p<a

where the subscript ¢ is used to differentiate p, from the coordinate p. (All time-
independent charge is again rejected.) The delta functions have disappeared from
the expressions of j and p,, but the infinity at z = —eo for —m/2 < argg < 0 still
exists. The idealized abrupt transverse change has been removed from p = 0 to

p = a. In this section, where the primary electromagnetic field only is discussed,
the earth is not taken into account and all space has the electromagnetic param-
eters oy = 0, €, and y, of free space.

Employing the natural assumption that the field caused by the current (4.4)
and charge (4.5) has the same time-dependence ¢’ as these it is easily and exactly
similarly to the derivation of formula (B.43) obtained from Maxwell’s equations
(B.1), (B.3) and (B.4) the inhomogeneous wave equation

V2E + k2E = icopy] + Ei Voo s (4.6)
0

where k is defined by equation (B.91).

The electromagnetic field produced by the »tubey evidently has the z-dependence
of the sources j and P, Le €92, All p-derivatives are clearly zero. Then using °
equations (4.4) and (4.5) equation (4.6) yields

%E, 1 OE fewpy

Zz

el(wi=a2) 4.7

_ + —
dmp)?  mp dmp)  °  ma’k?

for p <a. (For p > a the right-hand side of equation (4.7) is zero. The surface
p = a, where a discontinuity exists and where boundary conditions have to be
used, is not included in Maxwell’s equations.) The quantity n is defined here by
the equation

n* =ky— q* . (4.8)
and by the assumption

_m

5 4.9)

<argn <

ST



Electromagnetic induction in the earth 63

To avoid a special case let us assume that q and k, are not equal. This assumption
is made throughout this whole chapter. The homogeneous differential equation
corresponding to equation (4.7) is Bessel’s equation of the zeroth order (equation
(A.20)). Its solution, acceptable in the region p < g, is the Bessel function Jiy(np)
(see Section A.6). The other linearly independent solution, the Neumann function
Y,(np), approaches infinity as p approaches zero. A special solution to equation
(4.7) is (icopg/, mzzkg)e"(wt“qz) so that the complete solution for E,(p<a) is

it ,
E,(p,2, ) = (Cfomp) + ;132) el(wi=a2) (4.10)
0

m
where Cis an unknown complex integration constant.

In order to find out the other components of the electromagnetic field, let us
express Maxwell’s equations (B.3) and (B.4) (for p <«) in component form in
cylindrical coordinates utilizing the facts that 9/8f = iw, 0/9¢ = 0 and 9/9z = —ig:

igE = —iwB, , @.11)
9 o

. z _ .

iqE, + w iwB, , 4.12)

1 0pE,)

S e = TiwB, (4.13)

igB, =iwl,eE, , (4.14)
12 0~%0"p

. 0B, ]

iqB, + o = —lwlgeE, (4.15)

and

1 o(pB J .

— ('g ) _ ,u% e @t92) + jwugelk, - (4.16)

pdp na

In the present case Maxwell’s equations (B.1) and (B.2) are immediate consequences
of equations (B.3) and (B.4), respectively (¢f the comment after equations (B.35)—
(B.38)). Equations (4.11)—(4.16) constitute two independent systéms of differential
equations, namely (4.11), (4.13), (4.15) and (4.12), (4.14), (4.16). The former
contain the components £ » B, and B, and the later £, £, and B o Only the
latter equations are coupled to the primary source (through (4.16)). So £ » Bo

and B, are considered zero. It follows from equations (4.12) and (4.14) that
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oF
-2 % @.17)
P o
and
WH,E, OF
o= _020—2. (4.18)
in ap
Then, using equation (4.10) we obtain for p <a
Ey(p. 2. ) = = 35 T, (np)e’ -2 (4.19)
and
AT .
By(p 2, 1) = — 500 CJ, (qp)eiD (4.20)

Formula (A.40) was utilized here.

In order to be accurate and careful it should still be checked that the electro-
magnetic field obtained utilizing the inhomogeneous wave equation (4.6) really
satisfies all Maxwell’s equations (cf. the comment after equations (B.43) and
(B.44)). The validity of the g-component of equation (B.3) and the p-component
of equation (B.4) is involved in the derivation of equations (4.17) and (4.18). The
validity of the z-component of equation (B.4) can be seen simply by direct sub-
stitution of the expressions (4.10) and (4.20). The other components of equations
(B.3) and (B.4) are trivially zero, and because, as mentioned, in the case in ques-
tion equations (B.1) and (B.2) are direct consequences of the latter two Maxwell
equations all Maxwell’s equations are thus satisfied.

The calculation of the electromagnetic field outside the »tubey can obviously
be carried out in the same way as inside. Now Maxwell’s equations (B.1)—(B.4)
do not contain any source terms and consequently equations (4.6) and (4.7) are
homogeneous. The treatment of components E o> Bp and B, would again be inde-
pendent of that of E o £, and B . which ultimately proves that the former are
everywhere zero as the field is caused by the source (4.4) and (4.5). All possible
coupling occurs through Maxwell’s equations or through continuity conditions at
surfaces of discontinuity.

An arbitrary solution of the homogeneous equation (4.7) can, as indicated above,
be expressed as a linear combination of J,(np) and Y,(np). It is equally possible
to express the solution as a linear combination of the Hankel functions of the first
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and of the second kind and of the zeroth order Hél)(np) and Héz)(np) (sec equa-
tions (A.23) and (A.24)).

Formulae (4.2), (4.8), (4.9) and (B.91) imply that the argument of n satisfies-
the condition 0 <argn < /2. If argn equals zero, which is achieved when g is
real and less than k or argg = —n/2, the Hankel function H,fl)(np) with the time-
dependence e’ represents asymptotically, i.e. as p goes to infinity, an inward-
phase-travelling wave without any exponential attenuation or growth (equation
(A.58)). The Hankel function Hl,(z)(np) is connected with a similar outward-travelling
wave (equation (A.59)). In fact, both functions approach zero as p™2/2 as p ap-
proaches infinity. As the electromagnetic field caused by the z-axis centred current
and charge »tubey is discussed, it seems natural to choose the outward-travelling
wave, ie. the solution Hé”('np) of the homogeneous equation (4.7). If argn is
equal to m/2 corresponding to a real value of ¢ larger than k, the asymptotic
form of the Hankel function Hy(l)(np) with the time factor e’“’? does not include
any phase propagation and is attenuated exponentially as p increases. Likewise
the asymptotic expression of Hv(z)(np) involves exponential growth without phase
propagation as p approaches infinity. In this case it seems reasonable to accept
the solution Hél)(np) of the homogeneous equation (4.7).

Let us discuss the general case where the condition 0 <argn <u/2 is valid, ie.
—nf2 <argqg < 0. Since the real part of 7 is positive the functions Hlfl)(np) ahd
H,?)(np) with the time factor e’®’ represent asymptotically inward- and out-
ward-phase-travelling waves, respectively. Since the imaginary part of 5 is also
positive, the functions Hél)(np) and H,}(2)(np) exponentially approach zero and
infinity, respectively, as p approaches infinity. Thus if infinite growth is avoided,
i.e. the Hankel function of the second kind is rejected, the field seems to phase
propagate in the wrong direction. The total phase propagation is, of course, not
purely radial; z-propagation is also present due to the factor e™@%. The contra-
diction between the radial phase propagation and attenuation directions indicates
that the problem in question has no physically acceptable solution. However,
the unphysical exponentially infinite growth of the source current and charge
as z approaches —oo has been assumed. Hence other infinite unphysicalities might
also be expected as an effect of this.

All the conclusions above about the behaviour of the solutions involving Hankel
functions have been obtained simply by replacing the Hankel functions with the
corresponding asymptotic expressions. However, it is known only that the differ-
ence between a function and its asymptotic expression is small compared to the
absolute value of the asymptotic expression (see Section A.5). Therefore, for ex-
ample fhe function HV(I)(np) + H,,(2)(7?P) = 2JV.(np)j has the same asymptotic rep-
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resentation (rnp/2) " /2e  WP—vn/2=m[4) 4 H®@(np) in the case 0 < argn < 71/2.
Hence, in principle, H,,(Z)(np) could asymptbtically also involve an inward-travelling
wave with a small amplitude compared to the exponentially large quantity
|(mmp/2) 12 iP—vm/2-7/4)| without changing formula (A.59). This is a question
of the non-uniqueness of asymptotic expressions mentioned in Section A.5.

Further, the approximation of the real, i.e. the physical, part of a complex
function by the real part of the asymptotic expression of the function in question
is not straightforward, since the error included is only small compared with the
absolute value of the complex asymptotic expression (equation (A.18)). In the
case of a large imaginary part such an approximation could be very wrong. How-
ever, we are dealing with complex quantities that are products of one of the
above-mentioned Hankel functions and of a p-independent part. For such quan-
tities it can be established that the real parts with large values of p are close to
expressions which are obtained from the asymptotic formulae (A.58) and (A.59),
and which oscillate sinusoidally with p, as compared to the damping or increasing
amplitude of the oscillation.

A similar contradiction between the directions of phase propagation and attenu-
ation can easily be demonstrated in the situation where the field oscillating har-
monically with time depends on two Cartesian coordinates. In such a case, which
can be considered a limit of the cylindrical situation as the radius of the cylindrical
surface approaches infinity, no asymptotic expressions have to be used.

As pointed out, the direction of propagation discussed here is that of constant
phase. However, the direction of energy flow, ie. the direction of the Poynting
vector, seems more significant (see Section B.9). To examine this direction let us
first write the possible expressions for the field outside the tube» explicitly. With
the use of formulae (4.17) and (4.18) acceptance of the Hankel function of the
first kind leads to the following expressions:

Ey(p.2 ) == 4= FH{P(mp)e ), @.21)
E,(p, 2, t) = FH{D(np)e' a2 . (4.22)
and

_ WHeEg oot
Bw(p, z, ) =— in FHI(I)(np)et(wt qz) (4.23)

where F'is an unknown complex integration constant. Similarly with the use of
the Hankel function of the second kind:
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Ey(p %) == - GHP mo)e 24)
E,(p, 2, 1) = GH{? (np)e' %) (4.25)
and

WHHE : .
B (p,2,8) = — ———‘;‘7’ O GH® mp)e!wr=92) (4.26)

where G is an integration constant. It is evident that both equations (4.21)—(4.23)
and (4.24)—(4.26) satisfy the proper Maxwell equations, as do all their linear com-
binations, which involve every possible solution for the field outside the »tuben.

It has already been indicated above that if infinite growth for large values of p
is to be avoided in the case 0 <argn < m/2, the only acceptable solution is given
by formulae (4.21)—(4.23). Referring to Section C.1 and taking into account that
the medium is non-conducting, ie. kg is real, it is seen that equations (4.21)—
(4.23) express a field whose energy flow on average takes place asymptotically in
the direction of phase propagation, which with 0 <argn </2 is inwards in the
radial direction. So the discussion of the Poynting vector does not help in the
contradiction included in the case 0 <argn <m/2.

According to what was said above, equations (4.24)—(4.26) seem to give an
acceptable solution for argn = 0, in which case no asymptotic exponential growth
or attenuation of the Hankel functions occurs. This conclusion is likewise correct
when the Poynting vector is investigated, for according to Section C.1 the energy
of the electromagnetic field expressed by formulae (4.24)—(4.26) also on average
flows asymptotically (in a non-conducting medium) in the direction of phase propa-
gation and hence outwards in the radial direction.

In the case argn = a/2 neither the solution (4.21)—(4.23) nor the solution
(4.24)—(4.26) involves radial phase propagation asymptotically, and hence, again
referring to Section C.1, no radial energy flow takes place. Thus, as indicated
above, the solution (4.21)—(4.23), which exponentially approaches zero as p ap-
proaches infinity, seems acceptable.

Owing to the condition (4.2) the energy flows on average axially in the positive
z-direction, i.e. in the direction of attenuation and phase propagation, even if the
medium were conducting (see Section C.1). Of course, assumptions Req =0 or
Img = 0 involve special cases in which phase propagation, attenuation or energy
flow vanish.

The asymptotic behaviour of the energy flow has been studied above referring
to Section C.1 in which the asymptotic formulae of the Hankel functions are sub-
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stituted in the expression of the complex Poynting vector and then the real
part is taken. This procedure should be considered mathematically more accurately.
We omit such a discussion, however, and regard the procedure as acceptable and
correct on the grounds that analogous results can be obtained in the case of a
similar electromagnetic field depending on two Cartesian coordinates. In the latter
case no approximations are needed.

As a summary of the above discussion it can be said that the electromagnetic
field outside the wtubey is obtained acceptably only in two special cases: for argn=0
it is given by formulae (4.24)—(4.26) and for argn = n/2 by formulae (4.21)—(4.23).
In the general case 0 <argn <7/2 problems seem to arise. The difficulty is cer-
tainly not caused by the »tuben method, but by the assumptions. In Section 4.3
we will show that no finite expression for the primary field is obtained by direct
integration either, if the medium, ie. the air, is non-conducting and ¢ has a '
negative imaginary part. Thus the case argg = —n/2, which was considered accept-
able above, has to be excluded. When »suitabley conductivity is assigned to the air,
a negative imaginary part of ¢ may be allowed in Section 4.3, and there can be
seen no doubt that the ytubey method would also succeed better with the assump-
tion of conducting air. Such treatment is, however, omitted here.

Let us finally study what the primary field would be if the calculation were
performed without taking care of the difficulty mentioned, first with formulae
(4.21)—(4.23) and then with formulae (4.24)—(4.26). As stated above these are
only two possibilities, since the field outside the »tube» might in principle be any
linear combination of these solutions. If the outside field is expressed by equations
(4.21)—(4.23) the unknown coefficients C and F are obtained from the continuity
conditions of E,(p, z, f) and H o0 Z, t) at p = a, which using formulae (4.10) and
(4.20) and dividing by the common factor e!(@?92) gr¢ expressed as

icopaJ
CTo(ma) + == = FH{D (na) “4.27)
naky
and
wEe WE B
- 7" CJ,(ma) = — TO FHM(ma) . (4.28)

A question may arise, whether it is sufficient to demand only the continuity
of the tangential components of £ and H, since the medium does not actually
change at p = @ There is free space (or air) both inside and outside the »tubey,
and therefore it might be thought that the total fields must be continuous. How-
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ever, the discussion of Section B.7, where the electromagnetic boundary conditions
are derived, is valid for any surface of discontinuity, for example for the present
surface p = a, at which an abrupt change in the current and charge densities occurs
(equations (4.4) and (4.5)). Hence the mere tangential continuity of £ and H is
actually required (formulae (B.57) and (B.59)). Further it can be seen from for-
mulae (4.19), (4.20), (4.21) and (4.23) that the continuity of the normal com-
ponent E, is a consequence of the continuity of A, o

Equations (4.27) and (4.28) yield

wndJ, (na
= wondJ (na) 4.29)
2k§a

where formula (A.45) was utilized. The expression of C is otherwise similar to
that of F, but J, (na) is replaced by H{)(na). Equations (4.21)—(4.23) and (4.29)
thus express the electromagnetic field outside the current »tubey as a function of
the radius @ of the tube. The desired result, i.e. the field caused by a line current
situated at the z-axis, is obtained by letting @ go to zero, and at this limit

lwpognd oot '
E, = 02 Hl(l)(ﬂp)el(wt %), (4.30)
4ky
wuonz.f 1) i(wt—qz)
. = 5 Hy'(p)e .31)
4kg
and
ipgnd . 4.32
B¢ — 4 Hl(l)(np)ez(wt qz) ( )

where formula (A.47) with v =1 was used. The quantity wu,/k3 can also be ex-
pressed as 1/we,, (see equation (B.91)).

In exactly the same way we obtain from formulae (4.10), (4.20), (4.25) and
(4.26) with the boundary conditions at p = ¢ that

wuondJ  (na)

G =—
2kZa

(4.33)

where formula (A.46) was utilized. The final result describing the field caused by
the line current is now
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fwpgqnt oo _
, o H{P(np)e! @2 (4.39)
4k,
witgn’J 2) H(wt—qz)
= HPw)e (4.35)
4 0
and
ipgnt (2) i(wi—qz)
=TT g H¥(np)e . (4.36)

As indicated above, if the condition 0 <argn < /2 is satisfied, neither equations
(4.30)—(4.32) nor equations (4.34)—(4.36) seem to be acceptable, but equations
(4.34)—(4.36) are reasonable in the case argn =0, and for argn = /2 (4.30)—(4.32)
seem to be the correct ones. (As stated, formulae (4.2), (4.8), (4.9) and (B.91)
imply that 0 <argn <n/2.) Both sets of equations (4.30)—(4.32) and (4.34)—
(4.36) give the same electromagnetic field near the line current, i.e. for small values
of p. This field is expressed by

_ WHod J i(wt-qz) _ aJ i(wt—qz) 7
: e e , 4.37)
2k 2mwe o
s 2 i
iw, J : n°J i
E, = —#02 " lognpel@i=a2) = L 100y pitot=g2) (4.38)
2nk? 2mwe,
and
_ “0‘, i(wt—qz)
.= 5 e (4.39)

(see formulae (A.48) and (A.49)).

4.3 Primary field obtained by integration

Let us now leave the »tube» method and consider direct integration over the
primary source expressed by equations (4.1) and (4.3), which should, of course,
give the same results and conclusions obtained in the previous section. Actually
only the primary magnetic field around the source will be calculated by integrat-
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ing; the electric field (outside the source) is obtained from Maxwell’s equation

(B.4). The coordinate system introduced in Section 4.2, in which the z-axis lies
along the current and charge line, is still used and so formulae (4.1) and (4.3)

have to be rewritten as

j =Jei a5 x)s(v)e, (4.40)
and

_ 4 i(wt—qz)
Pe =" Je 5(x)6(y) - (4.41)

Actually equation (4.41) is not needed, since charge density does not appear when
integrating the magnetic field (see formula (B.81)). All space outside the source
behaves electromagnetically as free space, until otherwise assumed.

The use of direct integration in connection with a transverse discontinuity and
with an infinity associated with the delta functions is again, as in Section 3.1,
accepted referring to the discussions in Sections B.1 and B.8. Another difficulty
now arises, because the integral [da’7’+[]/R does not vanish when S approaches
infinity unless Irng = 0. Hence af:cording to Section B.8 formulae (B.78) and
(B.79) do not satisfy the Lorentz condition (B.74). The use of formula (B.81)
thus seems to be inadmissible. (In fact, as can be shown, it would be sufficient,
if both the time derivative and the gradient of the integral vanished, but in the
present case the former implies only a multiplication by icw.) The difficulty is due
to the exponential infinity at z = —o occurring for Imq < 0. Let us therefore
assume that the primary current stops (continuously) at a point z = z; and for
values z >z, is given by formula (4.40), which, of course, also changes the ex-
pression of the charge density. For this current, in which the exponential infinity
is avoided, the above integral vanishes and formula (B.81) is applicable. Letting
z,, then approach minus infinity the magnetic field caused by the original line
current (4.40) is obviously obtained. In other words, the use of formula (B.81)
with equation (4.40) has been »shown correcty. The surface S now lies farther in
z = —oo than the end of the line current. Later in this section an assumption of
non-zero conductivity of the air will make the integral fda' 7’ [f]/R vanish and
then the use of equation (B.81) is better justified. :

The substitution of equation (4.40) into formula (B.81) yields
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St V2 (v 2 + (2— 22
e Jei“( _ Vx) £yt () )e_,.qz,
Brn==21{7 , , e (4.42)
Mo =XV +@—-y)V2+@E-2)
( 1 +i‘—") 5 )87, x ((x —x')e, +
Ve -+ -y +e-2)2 : *

+ @ —¥)e, + (z - 2)e,)dx'dy'dz’ .
(The unit vectors &, ’e\y and €, are the same for both the source point ' = (x',
¥', z') and the observation point r = (x, y, z). ) By noting that the quantity Vx24y?
is equal to the radial cylmdrlcal coordinate p and the vector (1/p)( —ye, +xe ) 1s
the cylindrical unit vector & , and by changing the variable of integration to u =
z'—z we get from equation (4.42):
e e ——
4 L p2 +u? 0?2 +u?
(Notice that p plays the role of r, of Section 3.1.) If a function L(p) is defined
by

- w
B@r, 1) = i —) du. (4.43)
¢

e gy (4.44)

Lpy=f ¢ RV
equation (4.43) can be written as

MOJei(szqz) dL(,D) 2
4 dp ¥~

B, ) =— (4.45)
At this point we could mention that the conservation of charge requires the
existence of charge at the ends of the primary line currents of this chapter as well
as of Chapter 3. These charges situated at infinity are not included in the primary
charge densities discussed in this paper. Such an omission is permissible in Chapter

3, because the »end charges» do not have any effect on the primary fields. The
same is true also now for the charge at z = +oo, but if Img < 0, the »end chargey»
at z = —oo js exponentially infinitely large and cannot thus be neglected. However,
the charge density does not (explicitly) appear in formula (B.81) and so equations
(4.42)—(4.45) are correct. Later when the air is assumed »sufficiently» conducting,
the »end chargey at z = —oo also becomes insignificant.
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Consideration of formula (4.44) shows that there is no finite L(p) if Imq differs
from zero. In the case Img = 0, L(p) evidently has a finite value based qualitatively
on the facts that for large values of |u| the integrand of equation (4.44) can be
approximated by ¢ ""“le"q“/u and that [7(sinx/x)dx = /2. According to the
assumption made in the preceding section q differs from w/c. The calculation of
the primary electromagnetic field thus seems, as in Section 4.2, to run into diffi-
culties, if Imq is negative. In fact, the case argqg ="—n/2 was considered manageable
in Section 4.2. It was mentioned in Section 4.1 that the exponential attenuation
and growth along the primary source will be rejected later in this chapter, ie. Img
is set equal to zero. Hence it would seem most natural to make this assumption
now. Let us, however, proceed in another way and still allow Img to have negative
values, but assigning a non-zero conductivity ¢, to the air. This assumption of
the conductivity of the air would in any case be made when considering the
secondary field in the air (¢f. Section 3.2).

Referring to Section B.8 it is clear that formulae (4.42)-(4.45) are formally
valid in the case of conducting air, provided wj/c is replaced by the new propaga-
tion constant k, which takes the conductivity o, into account. Thus formula
(4.45) is true with L(p) expressed by.

bl e-iko p2+ u?

Lo =1 =

As in Section 3.2, the permittivity and the permeability of the air could also have
any values in the discussion which follows, but let us, however, keep them equal
to the free space values €, and p,.

It seems that L(p) of equation (4.46) exists as finite if Imk,, is less than or
equal to Imq. For Imky<Imgq the possible exponential growth of e*9* is cancelled
by the stronger vamshmg of e ’ko\/"z"“ ~ ¢t ot a5y goes to —eo, and for Imk,
= Img the evidence of the existence of L(p) is, as above, qualitatively based on
the integral f (sinx/x)dx = n/2.

If e"lu jg expressed as cosqu — isinqu (formula (A.29)), equation (4.46) can
be written in the form

ety | (4.46)

P -zk p+u2

L{p)y =2 f N/ cos qudu , 447

since the integrands involving cosqu and sinqu are even and odd, respectively.
Employment of formula (A.68) now yields

L(p) = 2Ko((0*(@* - k3N (4.48)
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where K, denotes a modified Bessel function of the zeroth order. The condition
Re(ikyp + igp) > 0 must be valid. Because p is real and positive (outside the source),
Imk is negative owing to the conductivity of the air and Imyq is non-positive
according to formula (4.2), the condition Re(ikp + igp)> 0 is always satisfied,

and equation (4.48) is obtained when

Imky <Imq . (4.49)

The term cos(varctan q/ik,) (v=0) was set equal to one when obtaining formula
(4.48). This is correct, because owing to the assumption in Section 4.2 that q
differs from k, and to formulae (4.2) and (B.42) for k,, arctan q/ik,, cannot be
infinite.

It was concluded above that the equality of Imk and Imq might also be per-
mitted, and as mentioned in Section A.6 the equality sign could and should obvi-
ously be added to formula (4.49). The fact, also indicated in Section A.6, that
formula (4.48) is found in literature for Imk, = Imq = 0 is emphasized here, too.
However, since equation (4.48) is not definitely shown to be true for Imk, = Imq <0
in this work, let us keep to the stricter condition (4.49), and later, when Imgq
equals zero and the air is conducting, it will be satisfied automatically. If the ex-
cluded case Imk, = Imq were involved in the following treatment, some additional
complications would appear, but evidently the discussion would not become im-
possible.

The inequality (4.49), which implies the existence of L(p) as finite, also makes
the integral [ da’ A" [71/R with the yretardedy time ¢ — koR/w vanish (cf. above).
Thus according to Section B.8 the Lorentz condition expressed now as
formula (B.88) is satisfied by equations (B.78) and (B.79) modified for a conducting
medium. This justifies the use of formula (B.81) and no end point z = z,, of the
source is needed as above. We might think that the calculation of B in non-con-
ducting air and with Imq <0, failed, because, as stated, the Lorentz condition
(B.74) is not valid in that case, and so the justification of the use of formula
(B.81) is not completely definite. In principle, we could then further suppose
that a solution of formulae (B.70) and (B.71), which does not satisfy the Lorentz
condition, would also give a finite field in the case oy = 0 and Imq < 0. Let us,
however, believe in the »proofy including the assumption of an end point z = z, and
justifying the use of formula (B.81) in the free space case, too. Hence let us, con-
sider L(p) (and B) existing as finite only if Imk,, é, Img.

It is always very important to specify in which complex half-plane a square
root lies (see Section A.2). Let us therefore examine the argument of the modified
Bessel function of equation (4.48). It is possible to show that p?(q? — k2) cannot,
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owing to the inequality (4.49), be a non-positive real number. So according to the
discussion after formula (A.68) the following condition is valid: —m/2 < arg(p?(g*—
ka)'/* <mf2. Expressing (0*(a?~ k' )'/* as p(@® — k3)'/7, arg(o*(@® — k)
is equal to arg(g? — k%)llz, because p is real and positive.

For —n/2 < arg(q? — k2)'/2 < 0 the inequalities 0 < arg i(g? — k2)'/2 < n/2
are satisfied. Since (i(g? — k2)!/?)% = k2 - ¢?, the quantity i(q? — k2)'/? is then
equal to 7 defined by formulae (4.8) and (4.9) also in the case of conducting air.
It now results from equations (4.48) and (A.63) that

L(p) = niH{P (np) . (4.50)

On the other hand, the inequalities 0 < arg(g? — k?,)”2 < 7/2 imply that the
formula —7/2 < arg(—~i(q? — k3)'/%) < 0 is satisfied. Since (—i(g? — k3)!/?)? =
k% — q*, the quantity —i(g? — k2)}/2 can then be expressed as . Formulae (4.48)
and (A.64) now yield

L(p) = —miH{P (np) - (4.51)

As a summary, L(p) is given by equation (4.50) or by equation (4.51) depending
on whether argn is greater or less than zero. Argn cannot be equal to zero, be-
cause it would make g2 — kg real and non-positive.

By substituting the expressions of L(p) (4.50) and (4.51) in equation (4.45)
formulae

__ iugnJ .

Bt = H ‘::7 Hl(l)(np)e’(wt_qz)é\w (4.52)
or

_ . ingnJ .

B, p) =— foT H®(np)e' -2 (4.53)

are obtained, depending on the argument of 7, for the magnetic field. Using Maxwell’s
equation (B.4) outside the source, V x B = uy(0y +ieqw)E =— (k2/iw)E, we then
get:

wignd

B ) =
¢ 4k2

(igH® (mp)e, + nH§ (np)e,)e'+-42) (4.54)

or
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wpnt
4k(2)

Bi it =— (igHP (mp)e, + nH{P(np)e,)e' 22 (4.55)
where formula (A.38) has been utilized. (The fact that £z, £) also has the time
dependence e’’’ has been employed, t0o.) In the formal sense equations (4.52)—
(4.55) give exactly the same electromagnetic field as formulae (4.30)—(4.36), which
were regarded as unphysical in the general case. The important point is, however,
that in equations (4.52)—(4.55) a conductivity of the air has been assumed such
that condition (4.49) is satisfied.

The assumption made in Section 4.2 that g and k, are different, as well as for-
mula (4.49), ensure that 7 is not zero. Let us, however, consider the behaviour of
the electromagnetic field as q approaches k. In this limit process the argument
of n depends on the manner of the approach of ¢ to k. Using formulae (A.48)
and (A.49) giving the approximations of the Hankel functions for small arguments,
both equations (4.52) and (4.54) anid equations (4.53) and (4.55) give the mag-
netic field (u0/21rp)Je’(“’t koz)e and the electric field (1/2meyp)(koJ/(w—ioy/ey)):

eflwi-a)g e, in the limit. So the hmlt expression of the magnetic field is the mag-
netic field caused by the line current (4.40) with g =k, but formally treated as a
time-independent and longitudinally constant current, and the limit expression of
the electric field is the electric field caused by the line charge (4.41) modified by
the conductivity of the air as indicated in Section 4.1 and with g =k, but for-
mally treated as a time-independent and longitudinally constant charge.

Formulae (4.52)—(4.55), (A.58) and (A.59) show that for both 0 <argn < /2
and —u/2 < argn < 0 the electromagnetic field approaches zero exponentially as
p approaches infinity, but the asymptotic radial phase propagation occurs inwards
for 0 <argn < /2 and outwards for —n/2 < argn < 0. Let us now consider the
direction of energy flow, and assume first that 0 < argn < #/2, in which case the
field is given by equations (4.52) and (4.54). According to the discussion of Section
C.1 the average asymptotic energy flow has the expression

W ~ o, (0, 2)(—B,m; — B,1,)8, + (B14; + 6,45)E,) (4.56)

where &, (p, z) is a real and positive function proportional to |J}?. B1s By Myps My
q, and q, are the real and the imaginary parts of k2, n and g, respectively. Since
w is positive, B, is also positive, and the non-zero conductivity of the air makes
B, negative. The condition 0 <argn < m/2 then implies that ¢, and g, must be
non-zero, i.e. g, > 0 and g, < 0 (see formulae (4.2) and (4.8)). So the z-compo-
nent of the asymptotic form of (V) is positive.

The consideration of the p-component of formula (4.56) is, however, much
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more significant, because the treatment of p involved difficulties when the »tubey
method was considered above. Since o, , and 7, are positive, n, is non-negative
and 32 is negative, the p-component of the right hand side of formula (4.56) can
be estimated as follows:

o 20
ay (—Bym; —Bymy) >;I‘12‘ B,(7 —n3) — 28,1,m,) 277‘5 (k1qy + kpa5)(k a0, — Ka4y)
4.57)
where k; and k,, which necessarily differ from zero, denote the real and imaginary
parts of k, respectively. Because k, and ¢, are positive, and &, and g, negative,
the quantity (20, /n,)(k,q, + k,q,) is positive. Due to the inequality 0 < 7,7,
the formula g, =k, k,/q, is satisfied and thus the following estimation is valid:
kiG, — kyq, =k,q,(1 — k2/q3). The quantity 1 — k3/q3 is negative because of
formula (4.49) and of the negativeness of k, and ¢,. Since the product k,q, is
also negative, k,q, — k,q, is positive. Hence formulae (4.56) and (4.57) give a
positive p-component for the asymptotic expression of (V).
If the condition —w/2 < argn < 0 is satisfied, the electromagnetic field is ex-
pressed by equations (4.53) and (4.55). The asymptotic form of the time average

of the Poynting vector is again obtained by means of the discussion in Section
C.1 and

Ny~ Otz(p, Z)((Blnl +162n2)é\p + (qul + 52‘12)22) (4-58)

where o, (p, z) is real and positive and proportional to |12 and the other param-
eters have the same meanings as above. In this case g, and g, may be zero and
thus the z-component of the asymptotic form of () is only non-negative. Owing
to the inequalities «,, §,, 7, > 0 and 8,, n, <O the p-component a, (8,7, + 6,1,)
of the asymptotic expression of (V) is directly seen to be positive. The results for
this case —n/2 <argn < 0, where both exponential attenuation and phase propa-
gation occur radially outwards, could also be obtained more directly from Section
C.1. ‘

Hence for both ranges of the argument of 1 the energy seems to flow asymp-
totically outwards from the source, which was concluded by referring to Section
C.1 where the asymptotic expressions of the Hankel functions are substituted in
the formula for the complex Poynting vector and then the real part is taken.

If the imaginary part of ¢ is negative, there is a lower limit above which the
value of the conductivity o, of the air must be, in order that the necessary con-
dition (4.49) is satisfied. So if the properties of the air are to be arbitrarily close
to those of free space, ie. g, is arbitrarily small, it is necessary for Irmq to be
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equal to zero. This conclusion is also valid if the equality sign is added to formula
(4.49). Hence let us from now on keep the assumption Img = 0. It results from
the non-zero conductivity of the air and from the definition of n (formulae (4.8)
and (4.9)) that the inequalities —m/2 < argn < 0 are satisfied, and so the electro-
magnetic field is expressed by equations (4.53) and (4.55).

Let us now calculate the limits of the field as o, approaches zero. If w\/uq€,
is greater than g, 1 approaches the real and positive quantity Vw?u,e, — ¢2
which is the correct n of free space. The electromagnetic field in the limit where
0, approaches zero is thus expressed by equations (4.53) and (4.55) with &, and
7 corresponding to free space. The continuity of the Hankel functions is utilized
here.

If on the other hand ww/uye, is smaller than g, n approaches the quantity
—-ivg? - wzuoeo where the square root is real and positive. This limit is equal to
the opposite number of the correct n of free space, ie. equal to the product of the
correct 1 and €™ Hence the electromagnetic field at the limit where o, approaches
zero is given by equations (4.53) and (4.55) with &, corresponding to free space
and 7 replaced by the opposite of 1 corresponding to free space. Use of equation
(A.35) shows that the field in the limit is expressed by equations (4.52) and (4.54)
with k£, and # corresponding to free space. The continuity of the Hankel functions
is again utilized. The special case w\/l e, = ¢ is neglected here on the basis of
the assumption made in Section 4.2.

»The continuity of physics» indicates that the limits derived give the primary
field for free space and »ideal air». This conclusion is supported by the fact that
the limit field is exactly the same as was obtained by the »tubey method for argn=0
and for argn = /2 and is given in formulae (4.30)—(4.32) and (4.34)—(4.36). The
discussion of the direction of the asymptotic energy flow of the limit field was
already included in Section 4.2. The »tube» method also yielded an »acceptabley
solution (4.34)—(4.36) for argqg = —n/2 and o, = 0. This result, however, does
not appear when direct integration is used, because the inequality Img <Imk,
would then be valid. So this solution for the primary field has to be excluded.

As mentioned above, formula (4.48) is definitely valid if both Imk , and Imgq
are zero (see also Section A.6). Hence the primary field in free space and with a
purely real longitudinal propagation constant can also be obtained by direct
integration, and the result is the same as the limit process above gives. -Here Sec-
tion 3.1 can also be referred to, in which the primary field in free space was
calculated in the special case of a zero longitudinal propagation constant. The
substitution ¢ = 0 into formulae (4.53) and (4.55) with 6, = 0, which express
the primary field in free space for ¢ < wvuy€, = ky, yields equations (3.6) and
(3.5). Notice the difference in the coordinate systems.
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It has been shown that the primary electromagnetic field has a well-defined ex-
pression for non-conducting air, i.e. for free space, when ¢ is real. However, as
indicated earlier in this section and as was the case in Section 3.2, a non-zero
conductivity of the air would at any rate be assumed when discussing the second-
ary field in the air. So let us keep the conductivity o, non-zero but small.

Finally let us express the primary field (equations (4.53) and (4.55)) in the
original coordinate system of this chapter mentioned in Section 4.1:

TRy Jetwt—qy)

_ igx ~
Er 0 =— HOmVx2+ (@ +h)?)e, + 4.5
.5 4k2 [ TGy @t he, + @459)
+ nHOMET+ @+ Pe, + —2CED _ poy T G RRe
¢ N N Y 2
and
_ iwnJett=ay) R
B £ = ——o HOMVZ+ @+ +h)6, —x6,]. (460

PN

4.4 Induction in a horizontally layered earth

As in Sections 2.2 and 3.2 the earth is assumed to be composed of n horizontal
layers (Fig. 1) with constant conductivities o; (7 ), constant permittivities e;,
constant permeabilities y; and thicknesses /; (h,=°°). As in Chapters 2 and 3 all
fields appearing clearly have the time-dependence e/“’?. Since the earth is laterally
homogeneous, a reasonable assumption is that all y-dependence is expressed by
the term e™'@,

The secondary electromagnetic field caused by the earth in the air satisfies
Maxwell’s equations (B.35)—(B.38) with ¢ = 0y, €= € and u= . Thus no charge
is connected with the secondary field in the air. The wave equations (B.43) and
(B.44) are also satisfied, and then

9’°E. ¥’E
4 _ Yy 2 _
— + 7 +n%E, =0 4.61)

where 7 is defined by formulae (4.8) and (4.9) with k&, including the non-zero
conductivity o,

Equation (4.61) can be solved in exactly the same way as equation (3.9), but
kg is to be replaced by 7, and so k has to be defined by the following formulae:
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K%:bz—nZ =b2 +q2"—k3 (462)
and
— % <argk, < % . (4.63)

As in Section 3.2, the parameter b is real, and integrals with respect to it are
Fourier integral representations in x. At first it is non-negative but is later ex-
tended to all real values. Because g is also real and a positive conductivity of the
air has already been assumed, both the real and the imaginary parts of o are
positive. So the special case k, = 0 is excluded. Referring to equation (3.23) the
solution for £, can now be written as

E (x,p,z, ) = e 792 [ D (b)e*o% '™ db (4.64)

where D(b) is an unknown vintegration constanty function.
In order to determine the other field components let us write Maxwell’s equa-
tions (B.37) and (B.38) in component form for the air:

oF

~iqh, — % =—iwB, , _ (4.65)
oF oF
Sl = —iwB, (4.66)
oF
EX +igE, = —iwB, , 4.67)

o oB, .
~igB, — ¥ = o0y + iwe)E, | (4.68)
8B, 0B, )

% ox = Hglog +iwey)E, (4.69)
and
oB ) .
_Xax +igB, = py(o, +iwey)E, . 4.70)

The knowledge of the y-dependence e % has been employed in equations (4.65)—
(4.70). Equations (4.65) and (4.70) give
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—¥ Pry —
iq + iw
0z 0x
E, =— 5 4.71)
n
and
oF oB

o0y + iweg) TZX + ig Ecl

B, =— 5 . “4.72)

n

Using equations (4.67) and (4.68) or analogy E, and B, can be written as

iq ——ZaE —iw ?EX
aox 0z
E =— 5 4.73)
n
and
) oF )
ooy + icweq) —6}2 —ig le
B, = 7 . 4.74)

The division by 7 is permissible owing to the assumption introduced in Section
4.2 that k,, and g are different. This assumption is made valid by the reality of ¢
and by the non-zero conductivity o,. In fact, the inequalities —n/2 < argn <0
are true.

Equations (4.71)—(4.74) indicate that the component B, must also be calcu-
lated as Ey above. By starting from the wave equation of the magnetic field (B.44)
we obtain in the same way as the derivation of formula (4.64)

B (x,,2, 1) = i@ [ 9 (b)e 0% ™™ db , (@4.75)
y K 0

where Q,(b) is an unknown »integration constant» function. Substitution of equa-
tions (4.64) and (4.75) into formulae (4.71)—(4.74) gives

E _ ei(wt——qy) v Koz ,ibx - KoZ ibxdb
L6y, z,0) = ——77—2_ [q [ bDy(b)e™ " e ™ db +iw [ Kk Qy(b)e™° e 1,

(4.76)
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el(wt-ay) > Koz ibx - Koz ibx
X, W2, ) =—"7—|"q K e e w e e s
Ez( ) 'n2 [—i _f 0Do(b) 0 db + _f bQO(b) 0 db]
4.77)
l(wt—qy) KnaZ lbx
B, (x,y,2,1) = ——[ u0(00+zweo) f kDo (b)e"o db + (4.78)
77
+q beo(b)e"Ozeibxdb]
and
z(wt—qy) KnZ lbx
B,(x,y,2,t) = ——— [iny(o, + iwey) f bQy(b)e 0 db + 4.79)
77

—ig fKOQO(b)eiKOZeibxdb] .

As in Chapter 3, referring to MoRrsE and FESHBACH, 1953, pp. 497—498, we
believe that all physical solutions for the seconday field in the air are included
in equations (4.64) and (4.75)—(4.79). According to Section B.5 the validity of
Maxwell’s equations (B.35)—(B.38) has to be controlled when the wave equations
(B.43) and (B.44) are used: The validity of the x- and z-components of equations
(B.37) and (B.38) is evident from the calculation of E,, E,, B, and B,. The y-
components of these equations, ie. formulae (4.66) and (4.69), were not utilized,
but their validity is seen from equations (4.71)—(4.74) and observing that E, and
B, satisfy the wave equation. The satisfaction of equations (B.35) and (B.36) is
a consequence of equations (B.37) and (B.38).

The electromagnetic field within the j™ layer of the earth satisfies Maxwell’s
equations (B.35)—(B.38) with ¢ = 0 €=¢ and u =y (¢ = 1,...,n). Analogously to
formulae (4.8) and (4.9) let us define a parameter n; for each layer by the following
formulae:

1?]-2 _ k]2 — ¢ (4.80)
and

T T
- P .

5 < argn; 5 (4.81)

The parameter k; is the propagation constant of the j™ layer. By making the
reasonable assumption that the conductivity of the earth differs everywhere from
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zero the quantities «; (j = 1,...,1n), defined by

Kl'2 = b2 — 17].2 = b2 + q2 - k]?' (482)
and

T T
ey <argk; < E (4-83)

necessarily have positive real and imaginary parts, which excludes the special cases
k;=0. All factors n; are then also non-zero and —m/2 < argn; < 0. By referring to
the corresponding solution in Section 3.2 and to the above discussion of the
secondary field in the air in this section the expressions for the field in the earth
can be written as follows:
E _ ei(wt—qy) v Kz -kjz~ _ibx

L%, 3,2,0) = ———[q [ bDyb)e"’* + Gb)e™ ") db+ (4.84)

)
+iw [ 1 )(Q0)e'T — Rb)e"*)e' ab]

E,(x,7,2,1) = ') [ (Db)e"” + G(b)e ") ab (4.85)
ei(wt—qy) N Kz -KizN _ibx
E (x,y,2,8) = 5 [—aq [ k(D;(b)eT” — Gb)e T")e""db+ (4.86)
ny —eo

+w f b(Q;b)e" T + Ry(bye i*)e ™ db]

. el(wt=ay) . T Kiz iz IbX
B (x,3,2,0) = ——5— [w;(0; + iwe;) [ k;(D;(b)e’T” — Gy(b)e T)e " db+
iy - (4.87)

+q j? b(Q(b)e'T* + Ri(b)e"‘fz)eibxdb] ,

_ . . o 2z “KiZ ib
B,(x,y,2, 1) = ") (@ @eT + R )e™ e ap (4.88)

and
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. eiwt-ay) v Kjz ~KjZy ,ibX
B, (x.y.2,0) = ———[it;(0; + iwe)) [ bD;(b)e " + Gy(b)e™ 7)™ db +
"i - (4.89)

~ i 'FK]'(Qj(b)eKiz - Ri(b)e"‘fz)e"bxdb]

forj=1,.,n—1,and

e!wt-qy) b

B (6y,2,1) = =———[q | bG,®)e™ "™ db —ic J KR, (b)e 7" e ap] ,
, (4.90)
E,(x,y,2,1) = /@) [ G (b)e™ e ap (4.91)
z(wt~qy) ¢ -Kpz ibx
E,(x,y,2,t) = ——— [ig f K, G, (b)e " """ db + (4.92)
T

+w [ bR, (b)e "™ ab] ,

i(wt-qy) .
B %2.2,0) = 5 [1,(0, + ice,) I K, Gy (B)e ™% €™l + (4.93)
Tl

n

+q [ bR (b)e" " e ap],

B,(x,y,2,1) = e'@W=®) [ R (B)e™*n*e™ ap (4.94)
and
eiwt—qy) 3 i»
B,(x,y,2,1) = ———— [in, (0, + iwe,) j bG,(b)e™*n*e'®*dp+ (4.95)
n;

+iq | kR (b)e e’ ab],

for the undermost layer j = n. The functions Q;(b) and R;(b) (j = 1,..., n) are un-
known yintegration constants». As above, all physical solutions for the field in the
earth are obviously included in these equations (MoRSE and FESHBACH, 1953, pp.
497—498). The validity of Maxwell’s equations (B.35)—(B.38) with formulae
(4.84)—(4.95) is also evident. Since the divergence of £ vanishes, no volume charges
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appear inside the layers of the earth. In the present case, however, £ is not parallel
to the boundaries of the layers. Thus the existence of surface charge at these surfaces
comes into question (see STRATTON, 1941, p. 483).

As we have established, both Re k; and Imk; (G =0, 1,..., n) are positive. Since
b and ¢ are real, the function e!(Wf—ay*bx)+x;z has no attenuation in the x- and y-
directions. In z both attenuation and phase propagation take place in the negative
z-direction. In the same way the function e!@*a7*bX) =iz js not attenuated with
respect to x and y and has both attenuation and phase propagation in the positive
z-direction. Thus the directions of attenuation and phase propagation are never
opposite in the expressions of the secondary field in the air and of the field in the
earth. The discussion of the direction of the energy flow is neglected, because no
contradiction between the directions of attenuation and phase propagation exists.
The treatment of the Poynting vector in Appendix C is not sufficient for the
present case (see also Section 3.2).

The tangential components £, Ey, H, =B, /uand H,= By/u of the electro-
magnetic field are continuous across the boundary surfacesz =0,z =z, =h,,
z=zy,=h,+hy..,z=2, ,=h +h,+ . +h, , (Section B.7). Hence using
formulae (4.59), (4.60), (4.64), (4.75)—(4.79) and (4.84)—(4.95) (excluding the
z-components) the boundary conditions can be written as

_ iwuoanxH§2)(n\/x2 + h?) i
4k2\/x2 + h? n*

I bD (b)e®*ab + (4.96)

+ ’n% § kgQo(B)e™*db = n% I b, @) + G (B)e® b+
= 2 _,

+ 52 [ k.0, (b) — R, (B))e™db
2

_wp o2 THP (nv/x2 + h2)

+ [ D (b)eP*dp = 4.97
o f o(b)e (4.97)

= }D(Dl(b) +G,(b))e’™db
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. inJhH§2)(m/x2 + h?) gyt iwe, ;:.K Dy (b)e™™*db + (4.98)
2152 2 0o '
4Vx2 +h? " -

= :f: b0, (B db = — Fl_téﬂj € (@, () — G, (B)e® db +
: (B)eap
and
i_{on(b)eibxdb = ij: (Q,(b) + Rl(b))eibxdb @99

for z =0, and
b(D,(b)e'T"I + G,(b)e™*T)e™™ db + 4.100)
2 7 7

a
2
]

“% [ 1,00, (8)e T — Ry(b)e™1)e ™ =
l' —00

== b(Dj+1(b)eKjﬂzj + G’-+1(b)e"‘f+lzf)eibxdb +
o1
t o KJ+1(Q,+1(b)eK1”zI — +1(b)e "]+lz])elbxdb

]+1

] (Dj(b)ekai + G]-(b)e'KiZi)eibxdb = { (Dj.,.l(b)ekj” zj 4 Gjﬂ(b)e-n,-ﬂz]-)eibxdb ’

(4.101)
+ oo
uﬁ J’ K. (D (b)eK]ZI -G (b)e K]Z])elbxdb + (4102)
771
+ 42 fb(Qj(b)eszj + Rj(b)e-szf)eibxdb =
i
+ + 1w€+ 2 B o
_1% f K]+1( +l(b)ekj 1Zj G]-”(b)e xlﬂz])e;bxdb_l_
7?]+1
+ fb(Qi+1(b)eKj+' %+ Ry,  (b)e™ T *)e ™ dp

:u,'+1 Neq —
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and

% [ (Q;(0)e" I + Ry (b)e™ %)™ db = (4.103)
] -0

;.1 .[ (Q]+1(b)eK]+1z] + Ry, 1(b)e_"l"lzl)e’l”‘db
i1 -

forz = z; where j = 1,..., n—2, and

4 [ b, (B)e 11 + G, (b)e r1 ) db + (4.104)

n-1 —

po1(Qp 1 (D) n1 L R (B)e *n-1Pn-1)e ¥ db =

n-1 "%

= % [ bG, (B)e ™ n*r1eap — ‘;‘% [ kR, (B)e n?m1e™*db
n —00

n—

f D, b)erin-1+ G, (b)e -1yt gp = f G, (b)e “n*r-1e™%dp,

(4.105)
o, , +iwe < - ;
n-1 2 n-1 f Kn_l(Dn_l(b)ekn_lzn_l _ Gn-l(b)e K”‘Izn‘l)elbxdb—i— (4.106)
n-1 el
o 4 fb(Qn_l(b) ekn1Pnl R (b)e nr12n1) e g =
n-1Mp-1 —
_ U + le }f K, (b)e-ann"l . : ~Kp zn_leibxdb
nn HpMy —
and
p f(Qn_l(b)e"" 1211 4 R (b)e “ntin1ye qp = ﬁ— fR (b)e *nn-1"0% gpy
n-1 -oo 1 —oo

(4.107)

for z = z,_,. Equations (4.96)—(4.107) must be satisfied by all values of x; the
common factor e/~ has been divided out from these equations.

As in Section 3.2, the use of formulae (A.4) and (A.6) in equations (4.100)—
(4.107) gives
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b . agb I ATV g LWK; iz
L D)% + L2 G B)e™ T +—1 0, (b)e' — —L R,(b)e™ + (4.108)
n; 7 n; 7y
1 j J
iz kerz | LK, oz
_QDjﬂ(b)e"mz]_Lzb G (b)e 715 — —1—2 ! Q].+1(b)'e"1+121+
(i j+1 j+1
in f+1 - .
* —211— Ri+1(b)e =0,
]+

Dy®)e"™ + Gy(b)e™ I = Dy, (0) 117 — G,y ()€™ = 0, (4.109)
0; + iwe )k, . (o, Fiwe)k; .
_ (g ey D.(b)e'T"i +(—’—~—’)—’ G, (b)e 7% + (4.110)
2 j 2 j
Ty T
gb . qb —KiZ: (0j+1 + iwejﬂ)"jq Kis1Z}
+ = 0;(0)e!i% +—— R;(b)e’ T + 2 D, (b)e™ 7T +
My H; 7 Ni+q
(0'+1 +i(.0€~+ )K'+ ~Ki+1Zf b 22127
_ Ny - 1%+ G]-+1(b)e Kjs1Zj _ q - Q]-+1(b)eK1 1% 4
M1 His1Myeq
L R ()™ =0,
#,-+177,'+1
L owei+ L rpeii—— g, myemi——L R, ()T =0
Ky 7 M 7 Mjeq 7 Hieq /

(4.111)
G=1,.,n-2), and

- TwK
Zb D, (b)eK"_lz"'l + ng—b Gn—l(b)e “n-1%n-1 4 Tnl Qn~1(b)ekn-1zn-1+
" " o (4.112)
fwK - qb - ik .
— = 1 R, (b)e 1ol — = G (p)e " n?ml R (B)e n el = 0
n-1 n n

D, (b)e nVnl + G (b)e “m1iml — G (b)e“n"nl =0, (4.113)
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_ (an—l + iwe.n—l)"n—l

2
Mh—1

D, (b)e*n-17m1 ¢ @.114)

(0,1 +iwe, 1)K, 4

2
Mn—1

+ G,_ (b)e n17m1 4

+ _4ab Q, ,(b)e n1n1 4 __gb R, (b)e " n1n1y

2 2
Hp My Hy 1My
(0, +iwe Yk - qb -
__\N'n 5 n) n Gn(b)e KpZp-i _ 5 Rn(b)e KnZnl 0,
Mn Moy

and
g, @ermm ¢ LR, ) LR, () =0,
- [T
n—1 n—1 n (4.115)

The set of equations (4.108)—(4.115) valid for every real value of b involves
4n—4 linear equations and 4n—2 unknown coefficients. So two of the coefficients
can be considered known, and it is possible to determine the others in terms of
the known. Let us regard G, (b) and R, (D) as known. These are the only coef-
ficients appearing in the case of a homogeneous earth. So D, () and Q,(b) can
be expressed as

Di(b) = ag(d)G (D) + agx(®)R,(D) (4.116)
and
0, () = Bs(D)YG, (D) + Br(BIR (D) . (4.117)

The quantities o (b), agy(b), B;(b) and B (b) depend on the properties of the
layers of the earth.

In the case of a homogeneous earth the field is given by equations (4.90)—
(4.95) with n = 1, so that all factors a(b), ap (D), B,(b) and B (b) are trivially
zero; no equations corresponding to equations (4.100)—(4.107) or (4.108)—(4.115)
exist. If the earth consists of two layers, the a- and f-factors are already rather
complicated:
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-2K1z1
e
ag®) =—7 (—q*b*(k5 — k3)* — kiking + k3k2nt + (4.118)
u u
-2 k%"l“z"?%n% +— k%"l"Zn%n%) )
My My
b) = 20705 b(k2 — kYK, 72 4.119
O‘R( ) I fwgb( 2 1)"1772 s “. )
-2
by = 22 2 2R 4.120
6G( )= Liwo qb( 2 1) 1K1M2 @. )
and
—2K121
e
Br() = —F— (~a?b?(k3 —k1)* — kjxing + kjkin} + (4.121)

Hy o5 2,2_H1 o 2.2
+ = kK KNy T T KK Kanin3)
My Hy

where

L =70~ ) — Kt} Kedni— 2 Kol — ok ket
4.122)

As z, approaches infinity all o- and g-factors approach zero. This is the expected
result, because the value z; = oo corresponds to a homogeneous earth. Another
way of achieving a homogeneous earth is to set 0, €, and u, equal to o,, €, and
U, tespectively. This substitution in equations (4.118)--(4.122) also makes all o-
and p-factors zero.

From equations (4.84), (4.85), (4.87), (4.88), (4.116) and (4.117) it is seen
that the tangential components of the electric and magnetic fields at the earth’s
surface on its lower side are

E(x,y2=00= [ E(bxyt)db, (4.123)
E,(x,p,2=0,1)= f E,(b,x,, 1db, _ (4.124)

B (x,y,2=0,0 :_£ B, (b, x,y, t)db (4.125)



Electromagnetic induction in the earth 91

and
B,(x%y,2=0,1) = ;By(b, x,, t)db (4.126)
where
ei(wt’rbx—qy) .
E (b, x,y, 1) = ——— [(gb(ag(®) +1) +iwk,B;(8)G,(b) + 4.127)
1
+ (gbag (b) + iwk, (Br () — 1R (D] ,
E, (b, x,y, ) = P~ (a;(b) + 1)G, (b) + ag ()R (D)] , (4.128)
ei(wt+bx—qy)
B, (b,x,y,1) = ———5—— [(@bBg(b) — 1y(0; + iwe )k (ag(d) — )G (b)+
n (4.129)
+ (@b Br(d) +1) — py(oy + iwe )k ap(B)R(B)]
and
B(b,x, y, 1) = /WP g . (5)G, (b) + (B (D) + DR, ()] - (4.130)

Using formulae (4.128) and (4.130) equations (4.127) and (4.129) can alternatively
be written as

[k . 2iwk R (b)
Eb,%3,0 =2 5 (5,0 + 5 B,(b,xy,1) — el ZmHus
1 m m
(4.131)
and
qb My(o; +iwey K,
B.(b,x,y,t) =— B,(bx,y, ) —— 5 E,(bxy )+ (4.132)
771 R
2u, (0, + dwe Ik, G (b)

+e i(wt+bx-qy)

ni
At the analogous point in Section 3.2 a surface impedance for each value of b
was defined as the quotient of —E, and H,, = (1/u,)B,, at the earth’s surface.

However, such a definition in the present connection would not be equally suc-
cessful, because the vintegration constanty functions G, () and R,(b) would not
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disappear, and so the surface impedance is not dependent on the properties of
the earth only. Of course, this fact does not make it impossible to define two
surface impedances:

E (b,x,p, ¢ E (b,xyt
7,0y = 2bxrd | EGXD_ @.133)

Hbxy0 iy B,(b,x,y,0)
= — i (@) + 1)G,(b) + ax ()R (b))| (abBs(B) +
— (o) Fiwe k(o (d) — )G (b) + (gbBL(b) + 1)+
—1y(oy Fiwe, K an (B)R (D))
and

2.0 = EGxyty  Ebxyn
2 —Hy(brx)y;t) _ul By(b’x:yxt) B

(4.134)

_ 1 (@bag(®)+ 1) + iok B (0)) G, (b) + (qbag (b) + iwk, (B () — )R (b))
nEB(1)G,(B) + (B (B) + DR, (b)) '

If the earth is homogeneous, in which case the electromagnetic field within the
earth is described by formulae (4.90)—(4.95) with n = 1, the impedances are

_ MmfGl(b)
Z10) == G, ¥ iwe, ), G, (b) + bR, (B) (#135)
and
Zz(b) _ ul(qul(b) — inlRl(b)) (4_136)

7R, (D)

These are also obtained with the substitution a;(b) = ag (b) = BaB)=p,B)=0
into formulae (4.133) and (4.134).

If g is equal to zero, equations (4.108)—(4.115) are resolved into two sets of
equations, one containing only D(b)- and G(b)-coefficients and the other only
Q(b)- and R(b)-coefficients. Then ag (b) and B (b) are necessarily zero. Substitu-
tion of ¢ = ax(b) = B, (b) = 0 into formulae (4.133) and (4.134) yields
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iwpy ag(b) +1

2,@) == O (4.137)
and
Zy(b) = — —1 bp(®) 1 (4.138)

0y +iwe; Bu(b) +1

where equations (4.80) and (B.41) (with subscript 1) have been utilized. Now the
integration constants have vanished from the expressions of the impedances, and
the latter throw light on the properties of the earth. Equations (4.137) and (3.51),
as well as equations (4.138) and (3.53), are the same (a;(b) = o (b) and Bz (b) =
.o (B)).

Using formulae (A.4) and (A.6) equations (4.96)—(4.99) give

b qb .
£ ~— G,(b) + (4.139)
721 "?1
iwk icop,qb Je o
5T 0,(0) + —5 Ry (b)) = — >
m 3 41rk0fc0

iwu0n2 Je ok

Do(6) = D,(0) — G,(b) = ey (4.140)
+i b +i

e et %o 1) +— 5 Qo0 + {0y ¥ ey K:EI)K‘ D,(®) + 4.141)
n Mon ™

—_ (Ul + i‘;del)'(l Gl(b) ot Q (b) _ b R (b) _ i e'KOh
1 MM ”1771 4

and

i 0o) = 00) R ®) = (4.142)

Equations (A.72) and (A.75) have also been employed here. Before using formula
(A.72) in the derivation of equation (4.139) it is necessary to take equation (A.40)
into account and to perform a partial integration for the first term of equation
(4.96).
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Formulae (4.116) and (4.117) can now be substituted into equations (4.139)—
(4.142), and so four linear inhomogeneous equations are obtained. From them the
unknown coefficients D(b), Q,(b), G,(b) and R, (b) can be calculated as functions
of the properties of the layered earth, of the conductivity of the air, and of the
height, the frequency, the longitudinal propagation constant, the magnitude and
the phase of the primary current. Then D () and Q,(b) are expressible as

iwu0n2fe_"°h

b) = .
Dy(b) = ay(b) 47rk?)i<0 (4.143)
and

I-ioje—KOh
Q4(b) = B,(d) “on (4.144)

The explicit determination of () and ,(b) would be straightforward but labori-
ous and is neglected. Their expressions are implicitly involved in Section 4.5 as
will be indicated. The reason for the somewhat complicated way of expressing
Dy(b) and Q(b) in equations (4.143) and (4.144) also becomes clear in Section
4.5.

The formulae for the total electromagnetic field Ey,(x, , £), By(x, y, 7) at the
earth’s surface on its upper side can now be written: £,,(x, y, ) is equal to the
sum of the field of equation (4.59) and of the field given by formulae (4.64),
(4.76), (4.77), (4.143) and (4.144) with z = 0, and B,,(x, y, 1) is equal to the sum
of the field of equation (4.60) and of the field expressed in formulae (4.75),
(4.78), (4.79), (4.143) and (4.144).with z = 0. The explicit equations for £, and
EM, as well as for the potential difference UP1 Pz(t) between two points P, and P,
on the earth’s surface, are now omitted, because they are also implicitly included
in equations in Section 4.5.

Owing to the continuity of the tangential components of the fields £ and A
the x- and y-components of £, and (i, /iy)B,, are equal to E, ,(ty,2=0,1)
and Bx,y(x, »,z =0, t) given by formulae (4.123)—(4.130). The normal component
of B is continuous (formula (B.53)), so that B, of equation (4.89) with z = 0 is
equal to By,,. The investigation of £}, and E, of equation (4.86) with z = 0
gives information on charges appearing at the earth’s surface (see formulae (B.52)
and (B.62)).
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4.5 Induction in an earth having arbitrarily changing properties in the vertical
and yalmost arbitrarily» changing properties in the transverse horizontal
direction

Let us allow the conductivity o, the permittivity ¢ and the permeability u of
the earth be any functions of the depth z and the transverse horizontal coordinate
x. After a while a restriction to this x-dependence will be made. The primary
electromagnetic field is still expressed by formulae (4.59) and (4.60) (with Imq =
0 and o, > 0). Since the properties of the earth are independent of y, all y-de-
pendence is given by ¢79”. The time-dependence is &/“’?. So the calculations of
the secondary field in the air presented in Section 4.4 is valid,again, and the
secondary field is thus described by equations (4.64) and (4.75)-(4.79).

As in Sections 2.7 and 3.4, the electromagnetic field within the earth satisfies
Maxwell’s equations (2.93)—(2.96). The component forms of formulae (2.93) and
(2.94) are similar to equations (4.65)—(4.70): but uH has to be written in the
place of B in formulae (4.65)—(4.67) and H in place of B in formulae (4.68)—
(4.70), and in the latter u, and the subscript 0 must be removed. The equations
analogous to formulae (4.71)—(4.74) are then

OB, o,
q 0x reout 0z
E, =— - , (4.145)
n
oF oH
iq ?‘2 + feou 72
E, =——% X (4.146)
n

oL oH
(o + iwe)—a—zx-k iq %

0x
H,=— z (4.147)
n
and
oF oH.
(0+iwe)gcx—iq—a;cz
H, = - (4.148)

The quantity n, which now depends on x and z, has a similar definition as above:

7 = n(x, 2)* = k(x, 2)* — ¢* (4.149)
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and

_r

) <argn(x, z) <

(4.150)

SIE

where k(x, z) is the space-dependent propagation constant of the earth. Let us
again assume that the conductivity of the earth is everywhere non-zero. Then

n(x, z) differs from zero at every point of the earth and —n/2 < argn(x, z) <O0.
Notice that the symbol i had earlier (formulae (4.8) and (4.9)) another meaning
than in equations (4.145)—(4.148). Confusion is, however, avoided, when the
arguments x and z are explicitly written in the new n and later the value of n(x, z)
at the earth’s surface will be symbolized by 7.

Equations (4.145)~(4.148) show that after E, and H, have been calculated
the other field components can be obtained in terms of these, as in Section 4.4.
Analogously to Sections 2.7 and 3.4, E), and Hy are to be determined from the
wave equations (2.98) and (2.99) also utilizing the facts that o, € and u are inde-
pendent of y and that the y-dependence of the fields is e9”. Substituting formulae
(4.145)—(4.148) into the y-components of equations (2.98) and (2.99) we obtain:

9F J2E i (o +iwe) [ ig OE, iwu oH
bl Y 2B, + q [ ( )(_Z y _ 2# 13)+ @.151)
ox? az* Y o+iwe ox 2 x  n? oz

. . . 2
Hotied) ig 36, o O] L[ B(E2 05, _ e O

oz n? 9z % ulox‘n? oax n? oz

2
L NE LA

oz \n? 3z n?  ox
and
o%H, °H iqr o [iqg 0H, o+iwe OE
—L +—2L+nH +—q[—“<—‘§—y—+ > ——y—)+ (4.152)
ox 0z Y ulax\n* ax 7 0z

. . . 2
+%(E OH,  o+iwe _BEL)] 1 [8(o+zwe)(k_ oH, N
oz \n? oz n? ox o+ iwe ox n? ax

(o +iwe)q E) N a(o-i-iwe)(_l\i 0H, N i(o + iwe)q a_El)]zo

n? 0z oz n? oz n? ox

Equations (4.151) and (4.152) are partial differential equations of the second
order which are also coupled to each other in the sense that both contain E, and
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H,,. Neither these equations nor their solutions are treated in more detail in this
study. Let us merely denote the most general physically acceptable x- and z-de-
pending parts of E, and H,, by flx, 2) and g(x, z), respectively, which thus satisfy
equations (4.151) and (4.152). Hence

E,(x,¥,2, 1) = fix, )’ ) (4.153)
and
H,(x, 9,2 1) = gx, z)el@r-ay) (4.154)

Expressing f{x, z) and g(x, z) as Fourier integrals with respect to x, equations
(4.153) and (4.154) can be written as

E,(x,21) = !Wt=ay) [ fip, z)e'*db (4.155)
and -
H,(x,7, 2 f) = ¢l | (b, 2)e'™*db (4.156)

assuming that the Fourier transforms and the inverse Fourier transforms in ques-
tion exist. From equations (4.145)—(4.148), (4.155) and (4.156) the following
equations are obfained:

i(wt—qy) e . o ,
E(xyz0= —(~)T[q [ bfib, 2)e’P*db + iwu(x, z) | Qg_%) e’bxdb] ,
X, 2 - - oz
K (4.157)
i(wt—qy) - . - ;
E(x,y,21) = _‘;—2 [—iq { b,2) ivx gy, 4 wi(x, z) | bg(b, z)e’bxdb],
n(x, 2) -~ 0z - (4.158)
i(wt—qy) = .
H, (x,y,2t)= e__2_ [—(o(x, z) +iwe(x, z)) | fib.2) e’b*dp + (4.159)
n(x, z) - 0z
+ g [ bg(b, z)eibxdb]
and
el wi—ay) . - b
H, (%20 = procy [i(o(x, 2) + iwe(x, 2)) [ bf(b, z)e'P*db + (4.160)
n(x, z -

—iq IJ_)agal;,z e”’xdb].
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The dependence of o0, ¢, 1 and 1 on x and z is explicitly stated in these formulae.

The electromagnetic field in the earth expressed by formulae (4.155)—(4.160)
satisfies Maxwell’s equations (2.93)—(2.96): The validity of the x- and z-components
of formulae (2.93) and (2.94) is involved in the calculation of E,FE, H  ,andH,.
Their y-components are also satisfied owing to the assumption of the validity
equations (4.151) and (4.152) with formulae (4.153) and (4.154). Equations (2.95)
and (2.96) are consequences of formulae (2.93) and (2.94), respectively. The right-
hand side of equation (2.96) expresses the volume charge density in the carth,
which in the present case is generally not zero.

As in Sections 2.7 and 3.4, the dependence of u and ¢ +iwe on x and z should
be known in order that the functions f(b,z) and g(b, z) could be investigated
thoroughly. So all discussion of the directions of attenuation and of phase and
energy propagation with respect to z is neglected here. (The comments presented
in Section 4.4 on the x- and y-dependencies are valid.)

The earth may contain discontinuities in its electromagnetic properties. The
solution expressed by equations (4.155)—(4.160) must then be calculated in each
continuous region separately and boundary conditions have to be used. Let us
assume that all such possible discontinuities have already been taken into account
and equations (4.155)—(4.160) represent the field in the whole earth. Equations
(4.84)—(4.95) are a special case of formulae (4.155)—(4.160). The former were
obtained using the separation of variables, but the latter were derived employing
the Fourier transform (¢f. Chapter 3).

We assume that the conductivity is not infinite in the uppermost part of the
earth. Then the tangential component of A in addition to that of £ is continuous
at the earth’s surface. This yields boundary conditions identical with equations
(4.96)—(4.99), when the right-hand sides of these formulae are replaced by the
right-hand sides of equations (4.157), (4.155), (4.159) and (4.156) with z = 0 and
the factor e¥(’*~) is omitted. If these equations are treated in the same manner
as formulae (4.139)—(4.142) were derived from equations (4.96)-(4.99), it is seen
that the dependence of the electrical parameters of the earth on x at the earth’s
surface results in different values of b being coupled to each other (cf. equation
(A.13)). In order to obtain a separate set of four equations for each value of &, let
us assume that the electrical parameters of the earth are independent of x at the
earth’s surface. Then using formulae (A.4) and (A.6) the following equations are
obtained:

qb iwK qb iy, iwuygbJe “o"
5 Do(b) + 3" Qy(B) — = fib) — —* &by = —2>———
n n m1

. (4.161)
7 dnkl,
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iwuoane"‘Oh
D.(b)— by =—""—"FF .
o0) = f0) == | (4.162)
j J
— o o)y 3y 42 0yt + T pipy T2 gy = — - o
i on* n3 m 4m
(4.163)
and
Loy —s@) = 0. (4.164)
Ko .

In these equations, which are valid for every real value of b, f(b, z=0) is denoted
byf(b), &b, z=0) by g(b), of(b, 2)/0z],—, by f'(), 38(b, 2)/0z],—, by &'(}),
o(x,z=0) by o,, e(x,z=0) by €,, u(x, z=0) by u; and n(x, z = 0) by n,. Accord-
ing to the assumption made above o, €, ; and n; are independent of x.

The four linear equations (4.161)—(4.164) may seem to contain six unknown
quantities Dy (B), Q,(b), f(b), g(b), f'(b) and g'(b), and so the number of equa-
tions would not be sufficient. However, consideration of equations (4.139)—(4.142)
associated with a layered earth and of formulae (4.116) and (4.117) suggests that
Ab), g(b), £'(b) and g'(b) include only two unknowns, in the case of a layered
earth G,(b) and R, (b). Furthermore, if the problem is supposed to have an un-
ambiguous solution, ie. the total electromagnetic field can be determined as a
function of the primary source and the properties of the earth, equations (4.161)—
(4.164) must have a single-valued solution. Thus actually only two unknown
quantities can appear in f(b), g(b), f'(b) and g'(b). But in order to be able to ob-
tain a solution to the problem, the dependence of the f- and g-quantities on the
unknowns must be known precisely.

Let us assume that the original unknown quantities can be expressed in terms
of fib) and g(b), which are now considered new unknown quantities. Assume
further that the dependence of f'(b) and g'() on f{(b) and g(b) obtained by sub-
stituting the expressions of the original unknowns is linear with known coefficients

cf(b), cg(b), mf(b) and mg(b):

f'(0) = c;(B)f(b) + c,(b)g(®) (4.165)
and
g'(b) = me(b) f(b) + m, (b)&(b) - (4.166)

In the case of a layered earth the f~ and g-quantities and the c- and m-coefficients
are
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fie) =D,(d) + G,(), 4.167)
f'®) =x,Dy(d) - k,G,(b), (4.168)
gb) = 7}1— ©@,() + R, () , (4.169)
£'0) =5 (4.0,0) = 1,R,0)) 4.170)

_ Ki(ag(B)Br(B) — ar(D)Bs(B) + ag(®) — Bp(d) — 1)

¢(®) ag(b)Br (D) — ap(B)Be(b) + ap(b) + 6R(b)A+ | B @.171)
O RO m =R OETMOESE @172
) TR I T T T @173
and

O = RO ) P BT G479

These formulae are obtained using equations (4.85), (4.88), (4.116) and (4.117).
In the case of a homogeneous earth, where D (b) and Q,(b) are zero, the coeffi-
cients are simply cf(b) = mg(b) = —k, and cg(b) = mf(b) = 0.

The question of the existence of linear equations (4.165) and (4.166) such that
the coefficients ¢p(b), ¢ (b), my(b) and my(b) are really independent of the original
and new unknown quantities, ie. known for each b as functions of the properties
of the earth and ¢ and w, is not discussed in this work. The discussion would
require consideration of equations (4.151) and (4.152) determining f{x, z) and
8(x, z). Anyway, the linearity of these partial differential equations suggests the
existence of equations (4.165) and (4.166). The treatment which follows is valid
for any coefficients cp(b), cg(b), my(b) and m,(b) in formulae (4.165) and (4.166).
Thus the coefficients may in principle be functions of any unknown quantities. In
the simplest case cp() = 1 ®/f(b), my(b) = g'(b)/g(b) and cg(b) =my(b) = 0.
However, the value of the results is questionable if the coefficients include unknown
quantities.

Substitution of formulae (4.165) and (4.166) in equations (4.161)-—(4.164)
yields
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_qb Do(b) n ik Qo(b) _ (12_ + M)f(b) — Mg(b) =

2 2 2 )
! ! g m M (4.175)
_iwpggbJe 0"
41Tk%l(0 ’
- 2 5. Koh
iwpn“Je 0
Dy(b) — fib) = —5— , (4.176)
drkgk,
(0p + iweg)k qb (0, + iwe,)c(b)
— = D) + ——5 Qo) + 5 fib) + (4.177)
n I‘lO"7 771
qb (0, + iwe )c,(b) B Je kot
2 2 gb) =—
nl 771 41'(
and
1
o Qo) —g®)=0. (4.178)
0

The aim of these considerations is to obtain the expressions of the electromagnetic
field on the earth’s surface. So it is not necessary to solve all four unknown quan-
tities D (0), Q(b), f(b) and g(b) from equations (4.175)—(4.178); D (b) and

Qo (b) are enough. Solving these from the four linear equations (4.175)—(4.178)
gives

iopgn?Je OO R () — R, (b)

D,(b) = 4.179)
° dnkrg(®)  Ry(b) + Ry(b)
and
-k (DY
_ Mple *o R,()
Q) =TT R, B) + R, 0) (4.180)
The following abbreviations are used in these formulae:
2202 _ 22 Se®) oo oo 2 32y,.2
R (D) = q*b*(ky — kg)* — ey gbki (k] — kg)n® — icop;m(b)gb(ky — kg)n® +

I o (B)e) — e OImB)+ L inPndegBe,®) . @18
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M
R,(b) = —k2nti,(b)* + i kP 0k o (b)my(b) (4.182)
and
R3(b) = n*njicu,mp(b)n* — qb(k} — k2)) . (4.183)

Here k, is, of course, equal to k(x,z = 0), which does not depend on x.
The dependence of k, on b (equation (4.62)) is explicitly recognized in formulae
(4.179)—(4.183). Substitution of equations (4.171)—(4.174) in formulae (4.181)—
(4.183) yields the quantities, R (b), R,(b) and R ;(b) for a layered earth. Compari-
son of equations (4.143) and (4.179) and of equations (4.144) and (4.180) gives
expressions for a,(b) and f,(b), which are equal to (R (b) — R,(b))/(R,(b) + R, (D))
and R4(b)/(R,(b) + R, (b)), respectively. The use of the ncomplicated» formulae
(4.143) and (4.144) is also now justified.

Using equations (4.59), (4.60), (4.64), (4.75)—(4.79), (4.179) and (4.180) the
electromagnetic field at the earth’s surface on its upper side has the following
expressions:

By iwpgnqxJet =)
X, y,t)=—
R TN
. iwopgqJe’ @) = pefo"(R. _ R,)
4mk? -~ ko®R,+R,)

H®mVx? + h?) + (4.184)

el®*gp +

N iwpy Je! @) = Koe'KOhR

5 3 gibxgp =
2mn - R; +R,

_ iwpy Je!@=a7) f e " (qbn’R, = k2k2R,) eiP% gp
widE L @, tRy) ’

w”0n2 Jellwt—qy)

By (e, £) = — e HP (/x? + h?) + (4.185)
0 —
- 2 Jpilwi—qy) = JKohip
4 Mo Jet ey . e (R, R2)eibxdb =
4k} ~ Ko(R; +R,)

. 2 7, i(wt— o -Koh
_ dwpgn'Je (wt-qy) e "R, ..
- *

2mkg = Ko(Ry +R;)
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iwpgnghJe’ =)
E {x, v, 6)=— - H®) 2 F Ry +
TV~ e N
N wigqlei @) = e* "R, —R,)
4mk3 -~ R, +R,

Wiy JeH @) = be"‘OhR3

e'P*dp =
2mn? ~ R, +R,

Wi Je' @) = ¢ M (qn?R, + bkIR;)

= e™db,

2mkin? = R, +R,

B W~ s A
N 'uOJei(wt—qy) 0 e-Koh(Rl —R2)
A . R, +R,

HOmVx2 +1?) +

e’t* gp +

poq Je' W) = be'KOhR3

e'™dp =
2m? ~ R, +R,

+

_ MOJei(wt—qy) o e-Koh(n2Rl +qu3)
m® R, +R,

eibxdb ,

i(wt— w “Koh
B MOJe’(wt qy) = g% R, b
BMy(xry: t) - 27T _le +R2 e db

and
iy mx Je (@7
By, (6,3, 8) = —————
4Vx? + h?
ijtg Je @t = pe oM (R _ R
4n ko(R, +R,)

HOVx? +h?) +

e ab +
jﬂoqjei(wt—QY) o Koe-xohRs

3 elb*gp =
— Rl +R2

2m
_ ity Je W) = oot (pn?R — qrIRs)
2m? = ko(R, +R,)

e db +

eP*dp .
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(4.186)

(4.187)

(4.188)

(4.189)
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Formulae (A.40), (A.74) and (A.76) were used when expressing the primary
electromagnetic field as an integral in equations (4.184)—(4.189) (c¢f. formulae
(3.57)—(3.59)).

Utilizing equations (4.184) and (4.185) and the convention concerning the
path of integration and made in Chapter 1 the potential difference Up Py (%) between
two points P, = (x,,,,0) and P, = (x,, y,,0) on the earth’s surface is

Py P P
2 _ 2
Up p, (1) = [ E-di= [ Ey-dl = [ E (x5, dx + By (x, 3, Hdy = (4.190)
P1 straight P, sl P sl

line
wigJe' et = [(e"(b’%‘qyz) — "B (x, —x )qbn?R, — k2k2R )¢ 0"
27Tk<2)772 —e Ko(b(xz - x1) - q(y2 _yl))(Rl +R2)

(ei(bx2~qy2) . ei(bxl—qyl))(yz N yl)n4R2e-—K0h] ,
Ko(b(xz - xl) - (Z(V2 - yl))(Rl + Rz)

As in Sections 2.2 and 3.2, UP1 P, defined in the above manner describes the
potential drop from P, to P,. The constant J connected with the primary source
can be solved in terms of a magnetic field component on the earth’s surface from
one of equations (4.187)—(4.189), and thus the potential difference Up, p, is ex-
pressible by means of the variation in the geomagnetic field observed on the earth’s
surface (cf. the end of Section 3.2 and formula (2.36)). If the potential drop is
considered along a line parallel to the primary source current, i.e. x; and x, are
equal, the result is

Vs ”On lwt(e iqyy _ e'ifIyl) o e-lcohR2 )
Up p ()= [ Ep,(x, 3 Ddy = e*dp
Ple() yfl My( ».0dy = 27rk§q 2 ky(R, + R,)
(4.191)

where x is the common value of x; and x,.

If equations (4.171)—(4.174) are substituted in formulae (4.181)—(4.183) and
IE 1» R, and R then into equations (4.184)—(4.190), expressions for £y, (x, y, 1),
By(x,y,t) and UP1 P, () in the case of a layered earth are obtained (cf. the end of
Section 4.4).

The expressions for the physical electromagnetic field on the earth’s surface
and for the physical potential difference between P, and P, are equal to the real
parts of formulae (4.184)—(4.190).

As in Chapter 3, the assumed conductivity o, of the air may have an arbitrarily
small (but positive) value. Thus equations (4.184)—(4.191) are valid when the
properties of the upper half-space are arbitrarily close to those of free space or
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ideal air. Owing to the »continuity of physicss it is obvious that the limit of for-
mulae (4.184)—(4.191) with o, approaching zero gives £, B and Up P, for
free space, and evidently this limit is simply obtained by setting 0y = O

The ratios of the integrands of formulae (4.184)—(4.189) can be expressed in
terms of g, w and the electromagnetic parameters of the air and the earth. These
ratios are independent of J and %, but contrary to Section 3.4 thus depend on all
the electromagnetic properties of the air, not only on Ko (cf. the impedances
(4.133) and (4.134)).

4.6. Induction in a homogeneous earth

Let us now assume that the earth is homogeneous with parameters o, €, u, k,
n, and k. The subscript 1 is preserved in n,, since 7 is associated with the air
(formulae (4.8) and (4.9)). As mentioned in Section 4.5 the coefficients ¢ .(b) and
mg(b) are zero and cs(b) and m,(b) equal —k. Hence according to equations
(4 181)—(4.190) the total electromagnetic field on the surface of a homogeneous
earth and the potential difference between the pomts P =(xy,y;,0)and P, =
(x5,¥,. 0) have the following expressions:

2,2 7 i(wt—qy)
WHaqn nIJe [ ( u ) kn . /
= — db|b -— 0" - sinbx
E x(x,y, ) - J Kot " Kle sin

(qzbz(kz — K2)? - ( o F uin K) (konl Ko % k2n2x)>],

(4.192)

2 ryi(wt—qy) o

iw, Je -

ot nﬂ Jap [(n%xo + —;1 1’?2K) ¢ o -cosbx/
—= 0

u
(qzbz(k2 — k) — (n%fco + Iﬂ"n2")(ko"71 Ko 70 k2n2K))],
0

(4.193)

EMy oy, )=
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2,2 1, i{Wt—qY) «
wiogk*nJe
E_(y0)=— s i db[(bz(k2~k§) + (4.194)
_,_”_0 2 _I_ﬁz “oh, o 27,272 242
u K Mk uonne cosbx/|q“b”(k* — k§)* +
- (nflco + #"72")(150"71"0 % kznzfc))],
0
2 7 i{wt—qy) o
pon“Je
By (e, y, ) = — —0———— [ db [(q2b2(k2—kg) + (4.195)
0
,u (771"o+_77 K)) "Oh-cosbx/(qzbz(k2—k?,)2 +
k2 + Moy ZK)”,
( )( omiko Ko
i a(k? — k2min?Jei@t-ay) « i
By, (6,3, 1) = — o 0): i I ab [be “ob -smbx/(q2b2(k2+
0
u
—kg)* - (nfxo+—“—n2r<)(kom Ko —°k2n2'<))], (4.196)
Ko i
2,2 1, i{(wt—qy) =
pon nyJe -
By, Gy, )= 241 ()fdb[b(kzxo-F#LOkgK)e “°”-sinbx/(q2b2(k2 +
— K2)? - (’7%"0 + i“nz")(konﬂ‘o + %k%zic))] (4.197)
and
2,2 1,iWF =
wignnyJe (bxg— i(Bx;—
UPIPZ(t) _ 0 27r1 [ db [(el( x2—qy2) _ ilbx) LIY1))((x2 —xl)qb(xo—l—

% K) +, - yl)(n%fco + u% n%c)) e"‘o”/( (B0, — %) — Gy, +
u

I
—yl))(qzbz(k2 — kg~ (nf"o + ,T’?z")(ko"l"o n kznz")m'
(V]

(4.198)
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Formula (A.29) and the clear oddness and evenness of the integrands have been
utilized in the derivation of equations (4.192)—(4.197). £}, (x, », 1), BMy(x, » 6
and By, (x, y, t) are odd as functions of x, while EMy(x, 8, By, (x, p, £) and
By, (x,y, t) are even with respect to x. Equations (4.192)—(4.198) are compar-
able to formulae (3.66)—(3.69), which are also associated with a homogeneous
earth but without any y-dependence of the source. For ¢:= 0 formulae (4.193),
(4.195) and (4.197) reduce to equations (3.66)—(3.68). The latter must be a little
modified, if the permeability of the earth differs from the free space value. With
q = 0 equations (4.192), (4.194) and (4.196) yield zero, as expected, and formula
(4.198), of course, gives equation (3.69).

In order to somewhat elucidate the influence of the harmonic space depend-
ence of the source, ie the effect of g, the component EMy(x, ¥, t) will be con-
sidered more closely. The conductivity o, is almost zero and for simplicity let us
assume that u is equal to u, and that the inequalities 0 > we, we,, are satisfied (cf.
Section 2.3). Then |k] is much larger than |kyl. Assume further that ¢ is much
larger than |k|. Then the following approximations are valid: n =~ Ny &~ —ig, Ky =
Kk = /b2 +¢g2. To further simplify the discussion let us set x equal to zero and
so consider F My under the primary source. The numerator and the denominator
of the integrand of formula (4.193) can now be approximated as follows:

nikg + - mPk)e ot~ —2g2\ /b2 1 ¢ ¢ Vo (4.199)
170 Mo
and
420262 - K32 (g + A ) ey + 20 k0] (4.200)
(0}

~ @bkt — 29D’k + q*b kg — 2q° (0% + g7k + k7)
~ =2k (b* +q%) .

By substituting these approximations into formula (4.193) £ My(x =0,y 1) has
the expression
inOQZJei(wt—qy) = o~ b2+q2h

nk? (;f Vb2 + ¢2

The integral appearing in equation (4.201) can be calculated using formula (A.74)
and so

By, (x=0,,) ~ db . (4.201)
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wuquJei(‘Ut—QJ?)

2k?

By (x=0,5,1) ~ H®(~igh) . (4.202)

Let us assume that g is also much larger than the inverse of 4. Then the asymp-
totic expression of the Hankel function (A.59) may be substituted into equation
(4.202) and the result is '

iwpgJetwt=ay)

PETe 2y Y2 (gh) et (4.203)

EMy(x = Oxy) t) ~

The function (gh)3/2e"%" decreases as g increases when g is larger than 3/2k. Ac-
cording to the assumption g > 1/h made above g really lies in that range. Formula
(4.203) therefore indicates that an increase of ¢, with the other parameters kept
constant, decreases the amplitude of the electric field component Eyr,» which
oscillates harmonically with time, at every point on the earth’s surface under the
primary source.

For comparison let us discuss the case g = 0, 0o =0, u= gy and 0 > cwe, weg.
Then the parallel component of the electric field at the earth’s surface under the
primary source is given by formula (3.66) with x = 0. As |ko| is much smaller
than |k| let us use the approximative equation (3.71). Due to the term e™%” the
integral of formula (3.71) gets its largest contribution at small values of &. Then
obviously the denominator b + k = b ++/b2 — k2 may be replaced in the inte-
gration by ik. The result is

w“o']elwt

By =0, ~——1o

(4.204)

This formula is also obtained from equation (3.74) with x = 0 and with the utili-
zation of the asymptotic expansion of Y, (ikh) — H,(ikh) (A.79).

Equations (4.203) and (4.204) show that the presence of a large longitudinal
propagation constant g diminishes the amplitude of £ wy by a coefficient
(17/2)1/2(qh)3/2e'qh/(|klh) compared to the case of no longitudinal propagation.
A phase shift also occurs. Assume for example that the parameters have the fol-
lowing values: w = 1571, 0= 103Q m™ and / = 10° m (¢f. SARAOIA, 1946,
p-122, ALBERTSON and VAN BAELEN, 1970, KaurMaN and KELLER, 1981, pp.
3 and 24). Then the approximate values of || and kol are 3.5-107° m™! and
3.3-10° m™. For the assumption ¢ > k| to be valid, ¢ must be of the order of
107* m™!. Then € %" makes the ratio of the amplitudes of the electric field com-
ponents expressed by formulae (4.203) and (4.204) vanishingly small.
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In the case u = pugy, x =0, k| >¢g> Ik, and g < 1/h the approximated result
for Epp,,(x=0,y, £) does not differ from formula (4.204) corresponding to the case
q = 0 (excluding the factor ¢7*9%).

With the numerical values w = 100s™, 6= 103Q m™, #=10%m and ¢ =
3-10°m™ (and u= Mg, x = 0), which satisfy the condition [k] > ¢ > |k,), but
not g < 1/h, the rough result is that the amplitude of By, is of the order of one
tenth of the value connected with no y-dependence, and the only phase difference
is due to the term 9. The value of w is high from the point of view of geomag-
netic variations (KELLER and FRISCHKNECHT, 1970, p. 203).

Although the approximative considerations above cannot be regarded as math-
ematically definite, they seem to indicate that longitudinal propagation in the
primary source current tends to decrease the parallel electric field component at
the earth’s surface under the source. As mentioned in Section 3.3 after the approxi-
‘mative formulae (3.71)—(3.73), an approximation can safely be accepted only
when the exact and the approximative expressions are directly compared. This
would, however, be very complicated in the present case and is therefore neglected.

The purpose of the above discussion has been to evaluate the influence of g on
the electromagnetic field. Geophysically reasonable values for ¢ have not been
looked for. A reasonable value of g might in practice be some 107...107% m™!,
which corresponds to a longitudinal wavelength (27/q) of hundreds to thousands
of kilometers.

The conclusions, -of course, only concern the electric field component
E My(x =0, y, t) discussed above, which is parallel to the primary source.

4.7. The case of no longitudinal space dependence of the primary source

Let us now consider the case where the longitudinal space dependence of the
source current and charge vanishes, i.e. ¢ = 0. (The earth again has the most gen-
eral properties valid in equations (4.184)—(4.190).) The assumption ¢ = 0, which
has already been referred to in equations (4.137) and (4.138) and in the discus-
sion of formulae (4.192)—(4.198), yields the results obtained in Chapter 3. In the
latter, however, no horizontal variation in the electromagnetic parameters of the
earth was included.

Maxwell’s equations (2.93)—(2.96) determining the induced field within the
earth resolve into two sets of equations: one containing only Ey, H, and H,, the
other containing only £, E, and H,,. Hence the functions fx, z) and g(x, 2) ap-
pearing in the expressions of Ey(x, »,zt) and H,(x,y, z, f) in equations (4.153)
and (4.154) are separate, from which it can be concluded that the coefficients
cg(b) and mf(b) are zero (see formulae (4.165) and (4.166)). The quantities 1 and
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n, are equal to &, and k,, respectively. Thus formulae (4.184)—(4.190) for ¢ = 0
can be wriften as

Ey, (%0 =0, (4.205)
iwugJel@t = gt
Ey (1) = — —2 e*gp | 4.206
My( ) 21T - . #—OC ( )
0 Uy f
Ey,x,0 =0, (4.207)
or - .
[T Ll ce “o .
By, (x, 1) = f év*ap , (4.208)
Mx i - o & .
F T o
By, 8) =0, (4.209)
i, Jetwt = pe ol )
By, (%, 1) = =2 J e™*dp (4.210)
z 2n 1N
K — C
0 ™ f
and
_ Wt o “Koh . .
U, (1) = — L2 = ¥)Je d (€2 — ™ 1)ap, (4.211)
Py Py 2m(x, —x,) Ko ’
b (KO - cf)
My

The quantity «, is given by formulae (4.62) and (4.63) with ¢ = 0 and is thus
identical with the quantity k, of Chapter 3 (see formulae (3.16) and (3.17)).
Equations (4.205), (4.207) and (4.209) agree with the conclusions made in Chapter
3 that the electromagnetic field does not have the components £, E, and B,

Let us define a surface impedance Z(b) as

Ey(b, x,3z=00
H (b,x,y,2=0,1)

Z(b) = — (4.212)

where Ey(b, x,,2=0,) and H_(b,x, y,z= 0, 1) are the integrands in formulae
(4.155) and (4.159) with z = 0, i.e.

Ey,(b,x,,2 = 0,1) = f(b)e!(:Fay bx) (4.213)

and
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o, + iwe
Hy(b,x,y,z =0,1) = (—L12—'—’—1—)

o)+ qbg(b)) ety bx) @.214)
M

(cf. equation (4.133) associated with the horizontally layered earth model). In the
present case g = 0, Z(b) has the expression

fo) ey

Z(b) = —iwp, 7(—5 = Cf(b)

(4.215)

(¢f. equation (4.137)). The impedance Z(b) is thus only a function of the prop-
erties of the earth and is obtained by assuming a harmonic time dependence and
that ¢ is zero. The latter equality in formula (4.215) was obtained from equation
(4.165) using the fact that cg(b) is zero.

Substitution of cf(b) = —iu, w/Z(b) in equations (4.206), (4.208), (4.210) and
(4.211) yields

iwpgle’ @t = Z(b)e *o"

_ ibx
By, 1) = o L vz T © db, (4.216)
toaon2 TLiWE = “Koh
iwpgJe e 0 ibx
- db , 4.217
By (x, 1) b _£ Ko Z(b) + iy, ¢ ( )
. i “Koh
B luojezwt = bZ(b)e Ko P
By =—7— ]} 2y + iy ¢ %P @219
and
u = wuo(y2 —yl)Jelwt o Z(b)e'Koh (eibx2 . eibxl)db .
P, P, 2m(x, — x,) o b(koZ(b) + icoy) (4.219)

If Z(b) were assumed to be even with respect to b, it would be possible to
make formulae (4.216)—(4.219) identical to equations (3.60)—(3.63). As seen from
formula (4.215), the evenness of Z(b) is equivalent with the evenness of cp(b).
Formulae (3.60)—(3.63) were shown valid in the case of vertical variation only in
the electromagnetic parameters of the earth. Let us therefore reject the x-depend-
ence of the parameters also now. Equation (4.151) determining the component E,
in the earth then reduces to formula (3.84). The treatments in Sections 3.4 and
4.5 show that the function f(b, z) can now be equated in each continuous region
with the function Dy(b)g;,(2) + G]-(b)g]?‘b(z) = G (b)(v(b)g;(2) + gl.(b)g;b ).
Since 'y].(b), g’].(b), g;.b(z) and g;b(z) are even with respect to b, the ratios
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SO [ 1 3fb2) fb _[ 1 3f(-b,2)
oN [ D o L:o and f((—b)) -7 ]Zzo are equal,
which according to formula (4.165), where ¢,(b) = 0, implies that cf(b) is even
with respect to b. Thus equations (4.216)—(4.219) can be expressed as formulae
(3.60)—(3.63), as is expected.

It is clear that Ey(x, z, t) in the earth is even with respect to x if the parameters
of the earth are even functions in x, not necessarily independent of x. Then
(b, z) = f{—b, 2) (see equations (4.153) and (4.155)) and further cp(b) = cp(=D).
In such a more general situation formulae (3.60)—(3.63) are thus also obtained.
The same assumption of the evenness in x of the properties of the earth would
probably permit formulae (4.184)—(4.189), which are associated with the case of
any non-negative value of ¢, to be written as b-integrals from zero to infinity such
that the integrals involve sinbx or cosbx instead of ef?* (cf. the special case of
equations (4.192)—(4.197)).

5. Discussion and concluding remarks

This paper deals with three theoretical models describing the primary field of
electromagnetic induction in the earth:

1. A harmonic plane wave propagating vertically downwards, corresponding to an
infinite horizontal current sheet above the earth’s surface as the primary source
(Chapter 2).

2. The field caused by an infinitely long horizontal straight line current oscillating
harmonically in time, and situated above the earth’s surface (Chapter 3).

3. The field caused by a similar line current which, in addition, has a longitudinal
harmonic space dependence, implying the existence of charges on the line
(Chapter 4).

In all these cases the earth is assumed to be an infinite half-space with a plane
boundary. Hence the treatments can be used in local induction studies involving
areas in the order of hundreds of kilometres. On a global scale the sphericity of
the earth has to be taken into account. Obviously, too, in the half-space model
the electromagnetic field should not penetrate deeper in the earth than the dimen-
sions of the area investigated (c¢f. FRAZER, 1974, pp. 402—403). In a homogeneous
earth the skin depth is simply a measure of this depth of penetration. KAUFMAN
and KELLER, 1981, pp. 157—174, say that the sphericity of the earth becomes
significant only when the skin depth is not small compared to the radius of the
earth. The effect of the earth’s curvature is also discussed by Warr, 1962, pp.
532-539.
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The upper half-space, the air, is initially assumed to behave as electromagneti-
cally free space, which is a good approximation to reality. For mathematical
reasons a slight conductivity-is assumed for the air in Chapters 3 and 4. In reality,
the conductivity of the air is in the order of 10714Q  m™! near the earth’s surface
(ISRAEL, 1971, pp. 95 and 249).

In this paper the electromagnetic properties of the earth are mainly assumed
to be laterally constant and piecewise constant in the vertical direction, i.e. the
earth is horizontally layered. Such a model is an idealization of the real situation.
This work, however, also contains extensions to arbitrary vertical variations of the
electromagnetic parameters of the earth. In Chapter 4, even variations in one
horizontal direction are included. These extensions bring the earth models closer
to the true situation, though their inclusion is merely formal, and they contain
functions whose determination from their differential equations is probably com-
plicated in actual practice.

In reality the propagation constant of the earth is much larger than that of the
air. Thus a plane wave incident with any real angle to the earth’s surface is re-
fracted in the earth approximately as a plane wave propagating vertically down-
wards, as implied by Snell’s law. So the results obtained with the first model for
the primary field are evidently applicable to any direction of propagation of the
primary plane wave, provided the angle of incidence is real (see CAGNIARD, 1953,
pp. 613—614, Wart, 1954, pp. 282, 286 and 287, and WAIT, 1962, p. 526). Oblique
angles' may, however, also imply a vertical electric field component associated with
surface charge at the earth’s surface. The conclusion on the validity of the first
model can be expressed even more generally by stating that the results obtained
in Chapter 2 are also applicable to complex angles of incidence, provided the
wave number describing the horizontal space dependence (ie. the horizontal propa-
gation constant) is small compared to the propagation constant of the earth. The
inverse of this horizontal wave number equals a typical changing distance of
the field in the horizontal direction, and the inverse of the propagation constant
of the earth expresses the skin depth. So in other words, the less the field varies
over a horizontal distance equal to the skin depth of the earth the iore usable
are the results of Chapter 2 (Wart, 1954, p. 282, and 1962, pp. 526—532). Clearly,
the farther away the primary source, the less the field varies in space. (The above
statements of the propagation constant and of the skin depth are clear in the case
of a homogeneous earth. If these quantities are not constant in the earth, the
statements should evidently hold for all their relevant values.) On the applicability
of Chapter 2, see also SRIVASTAVA, 1965, QUON et al, 1979, JonEs, 1980, and
KAUFMAN and KELLER, 1981, pp. 113—155.
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In local induction studies, the primary source of the infinitely long straight line
current provides the simplest model for auroral and equatorial electrojet currents
flowing geomagnetically east to west in the ionosphere approximately 100 km
above the earth’s surface. In practice, these electrojets have non-zero dimensions
in the transverse directions. Such models are implied by Chapter 3, because they
can be constructed as superpositions of line currents and because the equations
used in the calculations are linear (see below).

The case of an electrojet approximated by an infinitely long horizontal current
sheet whose width is finite lies somewhere between the first and the second models.
According to ALBERTSON and VAN BAELEN, 1970, the plane wave model sets the
upper limit on the electric field observed on the earth’s surface, while the lower limit
can be obtained using a line current model (Fig. 2). HERMANCE and PELTIER,
1970, point out that fields caused by horizontal current sheets can be approxi-
mated by those of line currents situated at greater heights.

The addition to the line current of a longitudinal sinusoidal space dependence
generalizes the model because it permits variations along the electrojet. The first effect
of this addition to be found on comparing the results of Chapters 3 and 4 is that
the electric field also has components perpendicular to the source, and the magnetic
field has a parallel component. The preliminary evaluation carried out in Section
4.6 indicates that the space dependence of the primary source tends to diminish
the parallel electric field component on the earth’s surface. To obtain more infor-
mation on the influence of the longitudinal space dependence, however, exact
numerical calculations would have to be made. Chapter 4, like Chapter 3, implies
models in which the primary current, harmonic in time and harmonic with respect
to the longitudinal space-coordinate, has non-zero transverse dimensions.

The source currents of the second and third models were mainly assumed to
flow in the east-west direction, i.e. approximately the direction of the electrojets.
By rotating the coordinate system, any horizontal direction desired for the currents
can, however, be obtained.

Only harmonic time-dependence is considered in this paper, except in Section
2.5. But since any »sufficiently» regular function of time can be expressed as a
Fourier integral of harmonic components (Section A.4), the discussions in this
work are also applicable to arbitrary time variations of the primary sources. But
a superposition of this kind, as used in Section 2.5, is possible only if the media
are linear, as they are in this paper (see Section B.4). In fact, the linearity of the
media also makes it permissible to omit the main geomagnetic field when dealing
with the electromagnetic induction in the earth (see Chapter 1). If non-linear
media were present, it would not be possible to use complex quantities (cf. Sec-
tion A.1). Further, the assumption made in Chapters 2, 3 and 4 that e‘“? is the
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only time dependence would be incorrect. It also presumes that the electromag-
netic parameters of the media are independent of time.

With fully analogous comments, Chapter 4 can be regarded as relating to a
space-Fourier component of an arbitrary longitudinal space dependence of the
primary source.

The main result of this work is the development of a theory of electromag-
netic induction in the earth caused by an infinitely long, horizontal line current
describing an electrojet, which oscillates harmonically in time and also has a longi-
tudinal harmonic space dependence. It is demonstrated that the electromagnetic
field on the earth’s surface can be calculated theoretically, as a function of the
primary source and of the properties of the earth, from Maxwell’s equations and
from electromagnetic boundary conditions if the earth is horizontally layered.
Formal extensions to arbitrary vertical variations of the electromagnetic parameters
of the earth and to lateral variations perpendicular to the current are also made.
In the mathematical calculation, however, it proved necessary to assume that the
lateral dependence vanishes at the earth’s surface. To start with a longitudinal ex-
ponential attenuation of the primary current was also included in the model.

But it had to be rejected, because, otherwise, there would have been no finite
primary field.

The final formulae for the field on the earth’s surface are complicated integrals
over a horizontal wave number. In future, when the results of this work are put
into practice, the formulae should be simplified by approximations, and numerical
integration will be needed. As regards further development of the theory, the
model of the primary source could be improved, say, by adding vertical currents
starting upwards from the present current. Such currents would affect the ac-
cumulated charge.

Formulations of the plane wave model and of the time-harmonic line current
model without harmonic space dependence are included in this work to provide
complete and non-approximative treatments of these subjects. Comments are
presented on previous publications dealing with these models. Nevertheless, the
main results derived by earlier authors are good approximations of rigorous for-
mulae in the case of electromagnetic induction in the earth. The treatment of
the time-harmonic line current model is also an introduction to the third model,
whose method of calculation is the same.

In the case of the time-harmonic line current, the electromagnetic field on the
carth’s surface is expressed in this paper as a function of the primary current and
of the properties of the earth. In the plane-wave case only the relationship between
the electric and the magnetic field is expressed. This relationship is a function of
the properties of the earth. If the phenomenon is caused by the infinite horizontal



116 Risto Pirjola

current sheet assumed initially, in which case the formulae are exact, the electro-
magnetic field on the earth’s surface can be expressed as a function of the primary
plane wave using the treatment in Chapter 2 directly. The primary wave throws
light on the properties of the current sheet.

Since the calculations in this paper are based rigorously on classical electromag-
netic theory, the results are applicable to any values of the parameters, and not
only to those reasonable for electromagnetic induction in the earth, which permit
displacement currents to be neglected. So this work may also be useful in solving
other kinds of electromagnetic problems.
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Appendix A. Mathematical subjects and formulae
A.1. Complex and physical quantities

In the mathematical treatment of physical problems it is often convenient to
use complex quantities. The actual physical quantities are, of course, real, and so a
convention can be made that the real part of a complex expression is the physical
quantity. Normally the time-dependence of the complex expressions is harmonic,
ie e’ =coswt + isinwt, where w is the real angular frequency (or its opposite).
Let G(r)e’? be some complex field. The corresponding physical field is then

Gonysl7,1) = Re[GFIE™] = 2 (Gl + G (e ™). (A1)

The asterisk denotes the complex conjugate. (See e.g. STRATTON, 1941, pp. 135—
136, JONES, 1964, p. 53, PANOFSKY and PHILLIPS, 1964, p. 190).

The use of complex quantities is correct, if all operations involved are linear. In
the manipulation of products of physical quantities we must, however, be careful,
because the real part of the product of two complex quantities is not equal to the
product of their real parts (see Section B. 9).

A physical quantity is not allowed to grow to infinity, but we may ask, whether
finiteness can be required of complex quantities, because their imaginary parts need
not behave physically. It can, however, be shown that in the case of a harmonic
time-dependence with w # 0, the complex quantities must also remain finite.
Similatly the space continuity of a physical quantity implies the same property
of the corresponding complex quantity, if the time-dependence is harmonic with
w#F0.

In this work harmonic electromagnetic quantities (co ¥ 0) are discussed, and it
can be shown that the treatment of complex quantities in Maxwell’s equations and
boundary conditions is then equivalent to the treatment of the corresponding
physical quantities (see Appendix B).

A 2. Convention of the arguments of complex square roots

Because square roots are double-valued, a clear definition of the range of their
arguments is always necessary. In this work, unless otherwise indicated, we assume
that the arguments of complex numbers z are chosen in the range —7<argz <7
and that the argument of \/z = z!/? is equal to (1/2)arg z. Hence square roots in this
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work normally lie in the half-plane —n/2 < argy/z < /2. More generally, the choice
of the argument of z is also important in formulae logz =loglz| +iargz and z% =

¢*1°8% where « is any real or complex number.

A 3. Dirac delta function

The one-dimensional Dirac delta function & (¢), which is actually not a function
but a distribution, can be defined as

Jo, r<—2
A A
5() =1 — 4 a
® Airg+[A’ 2 <13 (A2)
A
==
0, 1>7

0, r#0
5(1) = ) (A3)
teo, =0
The most useful property of the deita function is the following integral relation
f(@®), a<t<b
b
13
[rse-tyar =118 =g o 1= (A4)
. a

0, t<aort>bh

where f(¢) is an arbitrary function of a real argument ¢, @ and b are real, possibly
infinite, and @ < b (¢f. JONES, 1964, pp. 35-36).
The delta function is the derivative of the so-called step function 8 () defined
by
1,t>0
0(=1%,t=0 (A%
0, t<0

(MorsE and FESHBACH, 1953, p. 123). A formal equation

5(t) = ﬁ [ei™ da, (A.6)
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which actually is the inverse Fourier transform of 1/A/27 (Section A.4), is also very
useful. Because §(¢) is even with respect to ¢, a minus sign can equally well be put
into the exponent of e’®’.

A 4. Fourier transform

The one-dimensional Fourier transform f(w) of a function f(¢) of a real argument
tis
1

f(w)=ﬁ_;[ f(®e*lde. (A7)

The function f(7) is expressible as the inverse Fourier transform

SO=5= e do “.8)

(see e.g. WIENER, 1933, p. 3, MORSE and FESHBACH, 1953, p. 453). It is natural
that the function f(¢) has to be sufficiently regular in order that its Fourier. transform
exists. In this work, however, it is not necessary to deal with the mathematical theory
of Fourier transforms. So we just refer to e.g. WIENER, 1933, ARSAC, 1966, and
MorsE and FESHBACH, 1953, pp. 453—471.

Formula (A.7) indicates that f () does not change if the values of f(¢) undergo
finite changes in a set of measure zero, e.g. at separate points. Similarly changes of
S(w)in a set of measure zero do not affect the value of f(¢) given by equation (A.8).
Thus f(#) of equation (A.7) may differ from f(¢) of (A.8)in a set of measure zero,
and the same is also true for f(w).

ar (@
dt
using a partial integration implies that

Let us denote the derivative by g(t). Application of equation (A.7) then

g(w) = iwf(w) (A9)

provided that f(¢) is zero for r = *eo,
Substitution of equation (A.7) in (A.8) gives

3

=5k [dw [ar'f@)e e, (A.10)

Tr -0co

which is known as the Fourier integral theorem. A similar integral formula is also
satisfied by f(w). If the order of integration is formally changed in equation (A.10)



120 Risto Pirjola

and the equation is then compared with formula (A 4) with g = —ccand b = +oo,
the validity of equation (A.6) can be concluded.

On the other hand, according to what was said above the functions f(£) on differ-
ent sides of formula (A.10) may have different values in a set of measure zero. But
if formula (A 6) is considered valid, these functions apparently become equal at every
point. Similarly, if the equation

Ff(w)eiwtdw = fg(co)e"wtdw, (A1D)

satisfied for every value ¢, is multiplied by ﬁ @' and integrated first with respect

to t from —eo to +-oo, the formal use of equations (A.6) and (A 4) yields
f(w)=g(w) (A.12)

for every w. But equation (A.11) is valid although f(w) and g(w) differ in a set of
measure zero. If integrals such as those appearing in equation (A.11) are considered
this phenomenon is, however, of no importance,since changes in the values of f(cw)
and g(w) in a set of measure zero have no influence. Therefore equation (A 6) can
be used in the present work.

Let us denote the Fourier transforms of f(¢) and g(r) by F (w) and G (w),
respectively. The use of the definitions (A.7) and (A.8) with the interchange of the
order of integration then shows that

fF(w) G(w)e'“ldw = f ft—w)gw)du = f fwg(t—u)du. (A.13)

~00

This formula is the so-called convolution or Faltung theorem (MORSE and FESH-
BACH, 1953, pp. 464—465).

Let us assume that f(¢) is a real function (i.e. physical). Formula (A.7) then
implies that :

f@)=f*(-w). (A.14)
From equations (A.8) and (A.14) we obtain

@)= l/%jRe [f(w)e'*)dw = Re [ \/% f f(w)e"wfdw] . (A.15)
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A.5. Asymptotic expressions

Let f(z) and ¢(z) be two complex functions of a complex variable z. The series

oo

> a, /zP where the quantities a,, are complex constants is said to represent

p=0 14
F(@)/e(z) asymptotically, if
i n(f@ & %\ _
|zl|131~[2 <<p(z) EO zp)] 0 (A.16)

for every non-negative integer value of n (Mo RSE and FESHBACH, 1953, p. 434).
We then write

(@) = 9(2) i 55* (A.17)
p=0

and call the right-hand side the asymptotic expression, expansion or representation
of f(z). The series itself may be either convergent of divergent (ABRAMOWITZ, 1972,
p-15).

Two different functions may have the same asymptotic expression, .e. an asymp-
totic expansion is not unique (MORSE and FESHBACH, 1953, p. 436). For example
the function e can be added to the above-mentioned f(z)/o(z) without changing
the asymptotic representation when Rez > 0.

In this work we concern ourselves mainly with the first term of the asymptotic
expansion, i.e. consider equation (A.16) in the form

1@

s (so(Z) 1):0 (A.18)

and write formula (A.17) as

@)=~ ¢(2) (A.19)

The coefficient a is included in y(z).

A 6. Bessel, Neumann and Hankel functions

MAGNUS et al., 1966, pp. 65151, and OLVER, 1972, are general references for
the subject of this section and the presentation below is mainly based on them.
The differential equation
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a’f , df
247 4. 22y o
2" 3 +zdz+(z v )f=0 (A.20)
where z and v are arbitrary complex numbers is called Bessel’s differential equation.

z is known as the argument and v as the order. Special solutions of equation (A.20)
are the Bessel function J,(z), the Neumann function Y,(z) and the Hankel functions
of the first and of the second kind H,SI)(Z) and Hﬁz)(z). These functions are defined by

_ (_l)m(g) vt2m

J(2) = m2:0 AT tm+ D) (A.21)
J(z)cosvm —J (2)

Y,(z)= o ; (A.22)
HD(2) = J,(2) +iY,(2) (A.23)
and

HP(2) =J,(2) —iY,(2). (A.24)
The gamma function appearing in formula (A.21) can be expressed as

@)= [e'*tdr (A.25)

0

for Rez > 0 (see MAGNUS et al., 1966, pp. 1 —13). The I'function satisfies the
equations

'E+1)=zI(@), (A.26)
'(n+1)=n! (n non-negative integer) (A.27)
and

) =V (A.28)

If v is an integer, the right-hand side of equation (A.22) is replaced by its limiting
value. Formulae (A.23) and (A.24) resemble the so-called Euler formulae

e*® = cosf +isin (A.29)

where 8 may be real or complex.
The functions J,(z) and Y, (z) are linearly independent for all values of ». Hence
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every solution of equation (A.20) is expressible as a linear combination of these
functions. It is seen from formulae (A.23) and (A.24) that HV(I)(Z) and Hy(2)(z)

constitute another linearly independent pair.

For the mathematical theory of J,(2), Y,(z), H{V(z) and H®(z), WaTsoN,
1948, can be referred to. In this work we express that each is analytic, and so
possesses all derivatives, throughout the complex z-plane cut along the negative
real axis. The region —7 <arg z < = is called the principal branch of the functions
in question. Values for points z in other branches can be reduced to values in the
principal branch using the following formulae, in which m is an arbitrary integer:

Jv(zeim‘n') — eimVﬂJv(Z),

Y, (zel™™) = g7imym Y, (2) + 2isin(pm) cot(vm) J,(2),

W, immy - sin(m—1)vm) 1y~ jpq Sin(men) )
Ay (ze™) sin(pm) Hy7z) —e sin(vm) H,7@)
and

@), immy _ Sin(m+1)vm) ) 4 glvm sin(mer) ,.(1)
Hy™(ze™) sin (vm) A7) te sin(vm) A7)

Hence especially

Hv(l)(zei") — _e‘iVﬂH’§2)(z)
and

Hll(2)(ze-i7r) — _eivﬂHu(l)(Z)_
Equations

Foa@ 4 Fpy@ =2 F ),

dF,(2)
F,1@)—F,(2)=2 dz
dF,(2)
2= F, ()~ TF2)
and
dF,(z)
2 = () T E)

(A.30)

(A31)

(A32)

(A33)

(A.34)

(A.35)

(A.36)

(A37)

(A.38)

(A.39)

are known as recurrence relations. The symbol F denotes J, ¥, H(), H® or any



124 Risto Pirjola

linear combination of these the coefficients in which are independent of z and p.
For v = 0 equation (A.39) yields

dFy(z)
% =—F,(2). (A.40)

Other formulae:

L@ = (1" (2), (n integer) (A41)
Y,@=C1D"Y,6),  (ninteger) (A42)
HOE) = iy D), | (A43)
HP(z) = "™ HP(z), (A44)
L HR @) ~ () HD@) = 2, (A45)
L@HER@ 1y, HP @) =— = . (A46)

When v is fixed and z approaches zero, the following approximations are valid:

1 z\?v
I~ 51T (2) W+ —1,-2,.), (A.47)
Yy (e) ~ —iH{ () ~ il (2) = 2 logz (A.48)
and
@) ~—iH® () ~ il () = - 2 ( %) ¥ (Rev>0). (A.49)
When v is fixed and | z| approaches infinity, the following asymptotic expressions

can be used

wz\ 12
J(z)= ( 7) P,z)cosX —Q,2z)sinX), -—w< argz <wm, (A.50)

mz\ -2 .
Y (2)= (5 P,z)sinX + Q; z)cosX), —mw<argz<m, (A.51)

(6] _[nz -1/2 . iX .
HV(z) = (2—) PW,2)+iQw,z)) e, —<argz <2m, (A.52)
and .
-1/2 .

H(2)(z) = (%) P@,2)—i0@,z) e, —2n<argz <m, (A.53)
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where
X=z—V—;——g—, (A.54)
- 2k
o1+ 3 (~1)F (;LZ)E‘,} (A.55)
and
= ,2k+1
0w 3 (—1) ((’;Z)z—kl) . (A.56)
The symbol (v,m) is defined by
o 2
(v,m) = 22m H —(2k—-1)*). (A.57)

By taking only the first terms in the series, the Hankel functions for large values of
[ z] can be approximated as follows

1
HD @)~ (2 ) & iz —vm[2—m[4) —r<argz <2m, (A.58)
and

ape
HP (z)~ (%) ! g i vm2=m4), —2r<argz <m, (A.59)

(cf. formulae (A.18) and (A.19)).
The differential equation

d%f df
24 J 24 2 F
z ) +z 7 G-+ v9)f=0, (A.60)

where z is the complex argument and » the complex order, is called the modified
Bessel differential equation. Its linearly independent solutions I,(z) and K, (z) are
related to the Bessel, Neumann and Hankel functions by the following formulae:

L(z)= ™™ ] (z¢™?), —n<argz< % , (A.61)
I(z)= &2 (22, g< argz <, (A.62)
K, (2) =l—ﬂ Pl H,,(l)(zei"ﬂ) , —r<argz < % (A.63)

K, (2)= _111 -1V11/2H(2) (ze 11r/2) _12[ <argz <m, (A.64)
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and

Y, (ze'™*y = ei(”ﬂ)”ﬁly ) —% e'i”/ZKv(z), —r<argz < T

7 (A.65)

If x is real and positive and —1/2 <Rev < 1/2, J (x) and Y, (x) can be expressed
as follows:

Jx)= m (%) -vi[ (tszm_(l% dt (A.66)

and _

Y,(x)=— m (%) " If m‘ﬁ% dr. (A.67)
Let us now mention other formulae used in this work:

= on/Tr

({ w cos(yu) cosh(varsinhu) du (A.68)

= [ & ®*oshE co5(ysinhg) cosh (vg) dg = cos (Vﬁr_ctan %) K, ((a2+y2)?),
0

According to MAGNUS et al., 1966,p. 86, the latter equality requires that

Re(a £ivy) > 0. However, using formula 868 on page 111 of CAMPBELL and
FOSTER, 1954, it can be shown that for » = 0 the case Rea = Imy=0isalso
acceptable. But in order not to make the argument of K, zero, we must assume
that a # tiv (see formulae (A 48), (A.49), (A.63) and (A.64)). Owing to the fact

that the integral ({w % dx = m[2 exists it is obviously possible in the case »=0

to extend the conditions for the validity of formula (A.68), even if Rea: # 0 and
Imy # 0, and express the requirements as Re(a +iv) = 0 and a # ivy.

We pointed out in Section A.2 that it is always important to specify the complex
half plane where a square root is situated. The square roots in the first integrand of
formula (A .68) are real and positive. According to MAGNUS et al., 1966, p. 493, the
quantity (a2 + y2)/? satisfies the conditions —7/2 < arg(a®+v2)Y2 < 7/2, unless
a? + 9?2 is real and negative. Owing to the condition Re(a * iy) >0, 2 + 42 cannot,
however, be a non-positive real number. This is also true, ifRe(a 2iv)=20,Imy#+0
and « # *ivy. The conventions of CAMPBELL and FOSTER, 1954, on their pages 30
and 33, imply that —n/2 <arg(e®+ v2)? < /2 in the case v =Imvy=0.

We obtain from formula 563.4 on page 61 of CAMPBELL and FOSTER, 1954:

o 28 gf e'pg/zlo(pg/2), g>0

£ @) 2@2af+ )2~ g <0, (A.69)
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The arguments of both square roots are in the range —#/2 <arg < n/2, and p is any
non-zero complex number with a non-negative real part. The denominator of the
integrand can be expressed as i2w (f*-i i%r_f) 12 but in order to keep the argu-
ment of the denominator correct, the quantity (f 2—1' £ f )12
conditions — < arg(f? — i3 £ f)l/2 —r/2 for £<0 and —nf2<arg(f?—i —f)1/2<0
for f>0. So

has to satisfy the

= i?™8qf
f 1/2
—es (f2 — P )
2m

where formulae (A.5) and (A.61) have also been utilized. The case g = 0, which
yields —m, ie. half of the limits g - 0+ and g ~ O—, can be calculated separately.

The employment of formula 917 on page 125 of CAMPBELL and FOSTER,
1954, shows that

= “one P2 (i %) 0(g) , (A.70)

ePg2ra)i?

PERREST: (A.71)

J‘ K'O(O(p2 4 41T2f2)1/2)ei27rfgdf:
where ¢(#0) and p are any complex numbers with non-negative real parts and g is
real. The arguments of the square roots are in the range —~n/2 < arg < /2. Let
us change the variable of integration from f to # = —2nf and assume that ¢ is ex-
pressible as Be’™? = i where § # 0 and —n/2 < argB < 0. Formula (A.64) can
now be used, and we obtain:

. ) rar 2 N2y g g, — A P
_Dfo HPBo* + u*) e ™ ay = 2i P (A.72)
Since H{(B(p? + u?)Y/? is even with respect to u, the factor ¢ can be replaced
by €'*8 or by cosug. In the latter case the contributions from —eo to 0 and from
0 to e are equal.

The inverse formula of equation (A.71) is also obtained from Campbell’s and
Forster’s formula 917:

o e_p(g2+02)1/2

-i217fgd =K 2 + 4 2 r241/2
———e g (o(p o f°)%) (A.73)
“0 2g? + oH)V? 0

where the arguments of the square roots are in the range —n/2 < arg < /2, 6(#0)



128 Risto Pirjola

and p are arbitrary complex numbers with non-negative real parts. The validity of
equations (A.71) and (A.73) is also seen from the above-mentioned formula 868
of Campbell and Foster. By writing —2nf as u and by assuming that o = i where
B# 0 and —n/2 <argf <0 equation (A.73) yields the inverse of formula (A.72):

i e @ 12
L[ S e™dg = HPB(p? + u?)') . (A.74)
T (g —BH °
Analogously to equation (A.72), the factor e™® can be replaced by €8 or by
cosug in formula (A.74), and in the latter case the contributions from —o to 0
and from 0 to o are equal.

By deriving equations (A.72) and (A.74) with respect to p, and by utilizing
formula (A.40) for H® we obtain

S HP@? + u?)'
Bo | 2 L, 2\1/2
- P+ ur)

. (o2 a23y1/2
) s gy, — jeP @~ (A.75)

and

L5 o202 g g, HP @ + u™)'?)
77_.,{ e eSdg = fp PIENT: (A.76)
These formulae are also obtained from formula 917.5 on page 125 of CAMPBELL
and FOSTER, 1954. In addition to the conditions of equations (A.72) and (A.74)
their validity requires that the real part of p be positive. But on the other hand,
the case § = 0 can be included in equations (A.75) and (A.76) (see formula
(A.49)).

The equation

4 3)y+1 (A.77)

2 2 2
Z__+Z_+Z.__V

is known as the inhomogeneous Bessel differential equation. The so-called Struve
function

Hz) = éo (~1)m(%)v+2m+1 [F(m + —;)F(V +m+ %)]1 (A.78)

satisfies equation (A.77). The Struve function has the asymptotic representation
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v—1

1m (% - u)m(zm)!

!ZZm

H(z)>~Y,(2) + % (A.79)
m=0 m

2

(3
\/Fr(l+u> 2
for —r <argz <. In this formula Y (z) is the Neumann function and

=), = G )G ) )
J— — = — e . = —p + _ .
(2 )] =3 V+1)2 v +2) {5y tm—1 (A.80)

For m = 0 this quantity is equal to one. According to the last formula on page
440 of MagnNuUs et al., 1966,

1 s

2"_1\/§F<% + V) ("

H (as) — Y (as) = )y fe'”(f + 2y gy (A.81)
0

where a is any complex number and the real part of s is positive. In order that
a* + 2 is not real and negative let us assume that the real part of a is non-zero
(see MaGNUSs et al, 1966, p. 493).
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Appendix B. Basic electromagnetic theory

The basic electromagnetic theory has been presented by STRATTON, 1941, HARN
WELL, 1949, SOMMERFELD, 1959, FEYNMAN et al., 1964, JONES, 1964, PANOFSKY
and PHILLIPS, 1964, JACKSON, 1975, and Liras, 1972. It is, however, included also
in this work because the classical electromagnetic principles are the basis of the
treatments in Chapters 2, 3 and 4.

B.1. Maxwell’s equations

The classical electromagnetic theory is based on Maxwell’s equations

V-E =+, (B.1)
€o
V-B =0, (B.2)
7_0B
VxE = Y (B.3)
and _
oF

VxB = o + tgey 5, (B4)
They couple the electric field (intensity) £ (7, ) (V/m), the magnetic flux density
B(7,t) (or the magnetic field) (Vs/m?), the electric charge density p(7,z) (C/m3)
and the electric current density j(r,¢) (A/m?) together. r is the position vector
and ¢ is the time. The quantities €, and u, are constants, and they are called the
permittivity and the permeability of free space, respectively: ¢, ~ 8.854 - 10712
As/Vm, uy =4n -10"7 Vs/Am. The speed of light in free space is ¢ = 1/ o€ =
2.998 - 108 m/s.

It is customary to divide p and j, which are called sources, into different types
of charges and currents by introducing polarization and magnetization vectors P
and M. The polarization charge pp, the polarization current j, and the magnetiza-
tion current /,, are defined as follows:

pP:—— V-P’ (BS)

- 3P
ir=37 and (B.6)

T =V xM. (B.7)
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The vectors P and M could in principle be any vector fields, but as usual they are
regarded as the volume densities of electric and magnetic dipoles, respectively.

If further two vectors, the electric displacement vector or the electric flux density
D and the magnetic field intensity 7, are defined by

D=¢eyE +P : (B.8)

and

A=-LF_7i, (B.9)
Ho

VD=, (B.10)
V-B =0, (B.11)
VxE= —g (B.12)
and

Vo H=fyy + % (B.13)
where

Pirue =P = Pp ' (B.14)
and

Jvwe =1 —Jp — I (B.15)

S0 Pypye 204 Jpyye simply represent the charges and the currents which are left
over after pp and Ip +]TM, as defined by formulae (B.5) — (B.7), are subtracted
from the total charge and from the total current. The following interpretation can
be made: the true charges and currents refer to the charges which move freely in
the medium, while pp, ]'_P and ]'_M are associated with charges which are bound and
can only be detected in an atomic scale. This division of the total charge is a
macroscopic procedure. Microscopically there is only one kind of charge. Hence
equations (B.1) — (B.4) are always the correct Maxwell equations, and the equiv-
alent equations {B.10) —(B.13), with equations (B.5) —(B.9), (B.14) and (B.15),
are suitable for macroscopic treatments.

Let us consider Maxwell’s equations (B.1) —(B.4) valid at every point and time
where the space variations and time variations of the sources p(r, r) and j@,t) are
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continuous, and presume further that the sources are finite at these points and at
these times. The fields £ (7, £) and B(7, f) and their derivatives appearing in Maxwell’s
equations are also assumed to have the same properties, i.e. the continuity and
finiteness at the points and times in question. The finiteness of £ and B is natural
for physical reasons. The time continuity of physical phenomena also seems clear.
Space discontinuities in electromagnetism are discussed in Section B.7. Similar
statements are obtained for Maxwell’s equations (B.10) —(B.13) if p and  are
replaced by p,,,,, and f,,,, and the assumptions about £ and B are extended to
Dand H.

Normally in the discussion of electromagnetic problems, as in this work ysuf-
ficient» mathematical regularities of the quantities are implicitly or explicitly
assumed. For example at the end of this section and in Section B.3 certain
divergences are assumed to exist and the order of derivation is changed.

It is common to use Dirac delta functions (Section A.3) in mathematical ex-
pressions of idealized electromagnetic sources, e.g. a point charge. From the view-
point of the above-assumed continuity and finiteness of the sources Maxwell’s
equations can not in principle be used at the non-zero points of the delta
functions. The difficulty is avoided if the source is actually considered continuous
and finite but to be so close to the delta function in question that the mathema-
tical properties of delta functions may be used. Thus we simply believe that the
use of delta functions in electromagnetic calculations is correct. The »strengthy of
the infinity associated with a delta function is known exactly and, when multiplied
by a differential, gives unity (see formulae (A.3) and (A.4)).

The divergence of equation (B.3) establishes that the divergence of the magnetic
field is constant in time. If it is assumed that this divergence has vanished at some
time in the past (or will vanish in the future), the constant has to be zero, and
equation (B.2) has been derived from equation (B.3). The vanishing of the divergence
is achieved for example by assuming that before a certain moment the magnetic
field was zero everywhere in space.

B.2. Lorentz force
The force acting on a point charge q situated in an electromagnetic field £, Bis
F=q@FE+7vxB) (B.16)

where v is the velocity of the charge. It is seen that the work per unit time done
by the field to the charge is
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aw = - = _

_— = o == . B-l
g S F v =4k (B.17)
The magnetic field does no work because the magnetic force in formula (B.16) is
perpendicular to v. Equation (B.16), which is called the Lorentz force, and Max-

well’s equations include the classical electromagnetic theory.

B.3. Equation of continuity

- ) -
The divergence of Maxwell’s equation (B.4) yields 0 = V- j + ¢, &V- E. By
substituting p/e, from (B.1) for V - E this can be written as
V.ji+ 9 _ 0. (B.18)

of

This equation, which expresses the conservation of charge, is known as the equation
of continuity. Equation (B.18) was derived for the total charge and the total cur-
rent, but it is equally valid for the true charge and the true current only. It is also
valid for the polarization charge and the polarization current, as well as for the
magnetization current. No magnetization charge exists.

»Inversely» to the above derivation of formula (B.18) it is seen that Maxwell’s
equation (B.4) and the equation of continuity imply the quantity V - £ — ,o/e/0 to
be constant in time. Hence, if the vanishing of V- £ — p/e, at some moment can
be assumed, equation (B.1) is obtained. This result is exactly analogous to the
above-mentioned relationship between Maxwell’s equations (B.2) and (B.3).

The quantity eO(BE’ /0t), which does not represent actual current, has the
dimension of electric current density and is called the vacuum displacement
current. Equation (B.4) shows that the sum of the total current and the vacuum
displacement current is non-divergent. The vector dD/d¢, which is equal to the
vacuum displacement current plus the polarization current, is called the (total)
displacement current.

B.4. Constitutive equations

The solution of equations (B.10) —(B.13) needs other relationships between
the vectors D, B, E, H and j,,,,,. Such relationships, which are called constitutive
equations, depend on the structure of the matter in question and thus belong to
the field of solid state physics. In the simplest case, however, the relationships
between P and F and between M and A can be considered linear:

P =x.e,F (B.19)
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and
M= Xom H (B.20)

with scalar proportionality factors x, and x,,, which are called the electric and
the magnetic susceptibility, respectively, constant in time and space. From equations
(B.8), (B.9), (B.19) and (B.20) we obtain:

D= ek (B.21)

and

— 1=

H=-8, B.22
p (B.22)

where € = (1 + x,) ¢, is the permittivity or the dielectric constant of the medium
and u = (1 x,,) Mo is the permeability of the medium. e and u are always (con-
sidered) positive. In free space x, = X,, = 0 so that € = ¢ and u = Ho-

If equations (B.21) and (B.22) are valid, equations (B.10) and (B.13) become

_ p
V=g (B.23)
and

_ oF
VxB=uj,,.+ue FYE (B.24)

In many cases the current density j,,,, and the electric field £ are proportional,
with a non-negative scalar proportionality factor o constant in time and space, so
that
= gk, (B.25)

]true

This equation is known as Ohm’s law, and o is the conductivity of the medium.
In free space 0 =0. Let us call a medium which satisfies formulae (B.19) —(B.22)
and (B.25) with time- and space-constants €, u and o »simplen. The constancy of
€ and u is equivalent to the constancy of x, and Y,,,, respectively.

In accordance with the equation of continuity (B.18) (for the true charge and
current) and with formulae (B.23) and (B.25)

aptrue o

3¢ o Prue =0 (B.26)
or

Prrue = Po e"(U/E) ' (B'27)

the constant of integration p, being equal to the true charge density at the point
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in question at the time r=0. The time 7 = €0 is called the relaxation time of the
material. For conductors 7 is extremely small, for example for copper 7 ~ 210",
Equation (B.27) was derived to the true charge, but according to formulae (B.1)
and (B.23) and to formulae (B.5), (B.19) and (B.23) the total charge density as
well as the polarization charge density are proportional to p,,,,. in a »simple»
medium (see below). So all kinds of initial charge density vanish exponentially
with time (if ¢ > 0), and remain zero at every point of the medium where they
are initially zero. Since charge is conserved, the disappearing charge has to appear
somewhere else. Now the nearest possible points where the appearance can take
place are situated at the surface of the medium. The surface charge must appear
at the moment the exponential decay of the charge density begins inside the
medium. Such simultaneity, however, seems to contradict the fact that no signal
can exceed the speed of light. The reason for this contradiction probably lies in
the assumption that Ohm’s law (B.25), which is approximate, is valid.

From equations (B.1), (B.5) —(B.7), (B.19), (B.20) and (B.22) —(B.25) it can
be shown that the charge and current densities satisfy the following equations in
a ysimple» medium

= €
Pp = "XV E=—Xp = (1 - e—)p, (B.28)
0
= € €
Prrye =€V E = gp = P Pps (B.29)
€0
p= E_ptrue (= brue T Pp); (B.30)
Torue = OF, (B.31)
T aE aE' €€y a]_t
Ip = Xe€o .Z;: (6_60) T = o a‘l'rue, (B.32)
T 5 1 1 5 (M i aE
[ N
i - oF M ) - € aj—true)
_ | — — —_— ) =— 4+ —-——=
(.uo 1) (OE e ar) (uo : (]”“" o ot
and .
-7 i - _ M= ue _EQ Ttrue
I T ltrue tiptin —‘u_O]true + (“0—0 U) ot : (B.34)

The definitions of the permittivity and the permeability have also been utilized.
The true charge density has already been calculated and is given by formula (B.27).
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The situation is, however, more complicated if there are »externaly charges and -
currents in addition to the »internaly charges and currents associated with the
field itself and expressed in formulae (B.27)—(B.34). The effect of such »externaly
charges and currents can evidently be taken into account in the treatment by
changing the true charge and the true current in Maxwell’s equations (B.23) and
(B.24) suitably. Then formulae (B.28) —(B.30) (but not (B.27)) are satisfied by
the sums of the yinternaly and »externaly charges, and no such division of the
charge is actually to be made. Also in the case of equations (B.27) — (B.30) the
word yinternaly may be misleading; for example, the initial charge p,, in formula
(B.27).could just as well be called »externaly.

Let us point out that if it is assumed that all existing currents are given by
formulae (B.31)-(B.34), formula (B.24) (with j_tme = oF) is directly obtained
from Maxwell’s equation (B.4). Equation (B.24) combined with Maxwell’s
equation (B.1) then implies that the total charge density satisfies formula (B.27).

If the above-mentioned definition of a »simple» medium were taken exactly,
the concept of »external» quantities introduced would not be allowable. Let us,
however, accept this concept, and for example an yexternaly true current jj,,,, is
made to obey Ohm’s law by introducing an equivalent wexternaly electric field £’
such that j,,,, = oE".

More generally, the permittivity, the permeability and the conductivity need
not be scalars but they may also be tensors, which implies anisotropy. However,
in this work they are everywhere considered scalars. Further, these parameters in
question need not be constants in space and time, although the latter is assumed
throughout this work. The parameters also depend on the frequency with which
the fields vary in time. This dependence is neglected here, too, which is permissible
for low frequencies (below 108 Hz, STRATTON, 1941, pp. 321 and 327). On the
other hand when considering only one frequency, it is formally insignificant
whether the parameters are frequency-dependent or not. The use of permittivity,
permeability and conductivity scalars or tensors implies linearity. Nonlinear cases,
which are not treated in this work, are also possible.

B.5. Harmonic time-dependence of electromagnetic fields in »simpley media

Let us now assume that the time-dependence of the electromagnetic field is
harmonic, i.e. et (see Section A.1), and consider a »simple» medium characterized
by the parameters ¢, u and ¢. Assume also that there are no currents of yexternaly
origin, which means that the only currents appearing are those given by equations
(B.31) —(B.34). Maxwell’s equations (B.1) - (B.4) can then be written as
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V-E=0, (B.35)
V-B=0, (B.36)
Vx E=—iwB (B.37)
and

VxB=u(o+iwe)E. (B.38)

Equation (B.38) can be obtained directly from formula (B.24). The quantity w could,
of course, be any arbitrary constant in time in equations (B.35)—(B.38), but the
word »harmonicy implies that it is real and time- and space-constant.

No assumption was made about the charge density. However, equation (B.35)
states that p is zero. This is due to equation (B.38), which makes formula (B.35)
valid if either o or w differs from zero. In fact, equation (B.35) follows from the
equation Vx H = (0 + iwe)E obtained from formula (B.13), so that no assumption
about u is actually necessary. The fact that the only possible time-dependence of
the total charge density, under the assumptions made, is given by formula (B.27) can
also be referred to here. It can also be seen that equation (B.36) results from equation
(B.37) (assuming that w is not zero). This is a direct consequence of the more
general statement made in Section B.1 about the relationship between formulae
(B.2) and (B.3).

The curtls of equations (B.37) and (B.38), with the use of the other equations
(B.35) —(B.38), give the so-called wave equations for harmonically time-dependent
electromagnetic fields

V2E — iwuok + w?ueE =0 (B.39)
and
V2B — iwpoB + w?ueB = 0. (B.40)

Unless the harmonic time-dependence is assumed i must be replaced by 0/9¢ and
w? by —92/0¢? in equations (B.39) and (B.40) to obtain the general wave equations.
The vanishing of the charge density must be assumed to obtain formula (B.35), if
the time dependence is arbitrary. In non-conducting media the second terms of
equations (B.39) and (B.40) vanish, and the equations become Helmholtz equations.
In a well-conducting medium the third terms are usually insignificant compared
with the second terms and equations (B.39) and (B 40) reduce to the soalled
diffusion equations with a harmonic time-dependence.

Let us define the complex propagation constant k¥ with

k? = w?ue — iwuo. (B.A41)
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This equation does not define & unambiguously unless % is restricted to a half-plane
for instance —n/2 <argk < /2 (see Section A.2). Assume now that the quantity w
is non-negative, being the normal angular frequency. Then, considering the restriction
of arg k and equation (B.41), we see that

3

Sargk <0. (B.42)

&I

Using the propagation constant, equations (B.39) and (B.40) can be written simply
as —

V2E+KE=0 (B.43)
and A
V2B+Kk*B=0. (B.44)

The wave equations (B43) and (B.44) result from Maxwell’s equations (B.35) —
(B.38), but an arbitrary solution of equations (B.43) and (B.44) need not satisfy
equations (B.35) —(B.38).

It was mentioned above that in a well-conducting medium the second terms are
normally much larger than the third terms in equations (B.39) and (B.40). Hence,
in a conducting medium, & can be accurately approximated by (1—i)/8, where the
non-negative quantity

_ ]/L
5= (B.45)

is known as the skin depth and has the dimension of length. The skin depth measures

the depth of penetration of an electromagnetic field into a conductor. The skin

depth approaches zero, if the conductivity goes to infinity. Moreover 8 is also

smaller the higher the frequency, but the approximation of & with (1—i)/8 requires

that eco << 0. If this condition is not valid, £ must be written exactly as
e— _—
V1+<i)2+1 /l/1+(1)2~1

N VA A

(B.46)

where all square roots are non-negative.

B.6. Electromagnetic plane waves

In the case of electromagnetic plane waves the fields are defined to depend only
on one space coordinate and on time. Let us further assume, as is usual in the dis-
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cussion of plane waves, that the field appears in a »simple» medium without any kind
of charges or »externaly currents and also that the time-dependence of the electro-
magnetic field is harmonic ¢/*’? with a positive angular frequency w. The discussion
of Section B.5 is thus directly applicable, and the vanishing of the total charge is
actually a consequence of the assumptions concerning the medium, the currents
and the time-dependence.

If the single space-coordinate upon which the fields of a plane wave depend is
z, equation (B.43) takes the form

d;ZE——)z(Z +k2E(z) = 0. (B47)

The time factor e/’ has been divided out of this equation. Equation (B.47) can
easily be solved and the following expression is obtained for the electric field

E@,0)=E@)e'! = By @+ + E 1D (B.48)

where £ o and E , are complex constant vectors. The magnetic field can be calculated
from equation (B.37) and
B(z,H) = L2 & x B e (@t-k2) B ) (B.49)

’ w Z 0 w Z 1
where €, is the unit vector in the direction of the positive z-axis. Equation (B.37) is
thus satisfied making also equation (B.36) valid. In order for equation (B.38) to be
true, the z-component of £ must be zero, and so the z-components of both £ and
E , are set equal to zero. Thus equation (B.35) is satisfied. The complete validity of
equation (B.38) now results from the satisfaction of formulae (B.35), (B.37) and
(B.43), and so the plane wave electromagnetic field expressed by equations (B.48)
and (B 49) satisfies all Maxwell’s equations (B.35) —(B.38).

Since according to formula (B.49) the z-component of B is also zero, harmonic
plane waves are transverse with respect to both the electric and the magnetic fields.
If no assumption of the time-dependence of the field is made, plane waves may in
principle have non-zero longitudinal components of the electric and the magnetic
fields, even when no charge as well as no »externaly currents are assumed to exist
and a »simple» medium is considered.

Formula (B.42) implies that the real part of k is positive (w > 0). Therefore the
function e’?-%2) represents a field in which the surfaces of constant phase propagate
in the direction of the positive z-axis, while e/“7**2) s associated with propagation
in the negative z-direction. It follows from formulae (B.41) and (B.42) that the
imaginary part of k is negative if the medium is conducting. This means that both
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waves, e’ (K2 and ¢/(@**%2) e attenuated during the propagation in a conducting
medium. If ¢ = 0, £ is real and no attenuation occurs. From equations (B.48) and
(B.49) it is seen that the conductivity of the medium causes a phase difference
between the electric field and the magnetic field in both waves.

B.7. Boundary conditions

The scalar parameters e, u and o characterizing a medium have above been con-
sidered constant in time and space (excluding the discussion at the end of Section
B.4). The medium is then isotropic, linear and homogeneous. In a more general
situation these parameters vary from point to point. Then the medium is not
homogeneous. As is evident from the discussion of Section B.1, it is possible to
use Maxwell’s equations if these variations and their gradients are continuous and if
the sources are also otherwise continuous. In the treatment of electromagnetic
problems it is also necessary to know how electromagnetic vectors behave when
moving across a surface which separates one medium from another. On a macro-
scopic scale the values of €, u and o may change discontinuously at such a surface.
Therefore it can be expected that the field vectors also have discontinuities at the
surface. '

Let us how deal generally with any surface of discontinuity occurring in an
electromagnetic problem. The boundary conditions of the electromagnetic field
vectors at this surface can be derived by first considering a thin transition layer
where the values of the quantities on one side vary rapidly but continuously to
the values on the other side. Assume a very small right circular cylinder to be placed
in this layer such that its ends lie at the surfaces of the layer.

By applying Gauss’ theorem and equation (B.10)

§D‘ﬁda: IVD_dV: ~J‘pl‘)‘uedV:ql‘rue’ (B'SO)
Ky v 14
where S is a closed surface which encloses the volume ¥, # is a unit vector pointing
outwards at right angles to S and ¢q,,,,, is the total true charge within V.

If S is the above-mentioned small cylinder, formula (B.50) leads to the equation

®, - A, —D,h )} Aa + contribution from the side of the cylinder =g¢,,,,,. (B.51
2 M2 152 Yy - Qtrue

Here 7 12 denotes the unit normal vector at the boundary from medium 1 to medium
2, D, is the value of D at the boundary in medium 2, D, is the corresponding value
in medium 1 and Ag is the area of the end of the cylinder. Letting the thickness of
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the transition layer, i.e. the height of the cylinder, approach (macroscopically) zero

and expressing q,,,,, as 8,,,,, Aa where 8,,,,, is the true surface charge density at
the boundary we obtain:

A = =

n12'(D2_D1):8true' (B.52)

An assumption that D is finite was utilized to make the contribution from the side of
the cylinder vanish in the limit. Equation (B.52) indicates that the discontinuity of
the normal component of the D field at a boundary between two media is equal to
the true surface charge density at the boundary surface.

Similarly from equation (B.11)

My By~ B)=0 (B.53)

s0 that the normal component of B is continuous.

Let us now replace the small cylinder in the transition layer with a rectangle
whose plane is perpendicular to the surfaces of the layer and whose longer sides lie
at the surfaces of the layer.

Stokes’ theorem and equation (B.12) give

$E-di= [VxE-fida=— ja— nda (B.54)
L A !

where L is a closed loop in space and 4 any surface bounded by L and the direction
of the unit normal vector 71 is such that the rotation around L is positive, i.e. right-
handed.

Assuming that L is the above-mentioned rectangle:

S¥T]

(E’l - E'2 -?)As + contribution from the ends of the rectangle = — 95, RAsAL

' (B.55)

In this equation tis a unit vector parallel to the surfaces of the transition layer and
parallel to the side As of the rectangle. The vectors E and E are defined as D and

, above, 7 is a unit vector normal to the rectangle and Alis the length of the ends
of the rectangle, i.e. the thickness of the transition layer. Let us again shrink A/ to
zero. The contribution from the ends then vanishes because £ is finite. Owing to
an assumption that the derivative 35/8¢ remains finite, the right-hand side of
formula (B.55) becomes zero. Expressing fast=n 12% 7 we thus obtain:

[«3]

Aofi,x(E,~E)=0, (B.56)
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but because the orientation of the rectangle, ie. the direction of 2, is two-dimen-
sionally arbitrary, the following equation has to be satisfied:

A x (E,~E)=0. (B.57)

This means that the tangential component of the vector E is continuous across the
surface of discontinuity.

In the same way from equation (B.13):
A - _ -
Ry *(H,—H ) =K, (B.58)

rue

where Ktme is the true surface current density at the boundary. The derivative
dD/dt was here assumed to remain finite, like 3B/t above. A non-zero value
of K,,,,, means that 7, is infinite at the boundary. So if a boundary on both sides
of which the conductivities are finite is considered, K must be zero and then the

tangential component of & is continuous:

flip * #,-A)=0. (B.59)

true

From equations (B.1) and (B.4) we could still derive new boundary conditions,
for the'normal component of £ and for the tangential component of B, respectively.
Equations (B.8) and (B.9) would then give boundary conditions for 2 and # (cf;
below). Using equations (B.21) and (B.22) the boundary condition for D can be
expressed in terms of £ and that for A in terms of B.

The equation of continuity (B.18) is similar to Maxwell’s equation (B.10), which
leads to the boundary condition (B.52). Hence we may analogously deduce that

A= = 35 '
n12'(]2*]1)=_$- (B.60)

Here § is the total surface charge density. However, equation (B.60) is absolutely
valid only in the absence of surface current. The presence of any type of surface
current may give an additional term to the equation. Such a term is mathematically
the result of the possible non-vanishing of the contribution from the side of the
cylinder when treating the equation of continuity in the same way as equation
(B.10) was treated in the derivation of formula (B.52). The only types of surface

current are true K, and magnetization K, :

true
Ky =1y, x (0, — ). (B.61)

The existence of polarization surface current would presume dP/d¢ to be infinite,
which would presume that either 3/3¢ or 8D/dt or both were infinite. As in the



Electromagnetic induction in the earth 143

case of space charge the only types of surface charge are true §,,,,, and polarization
dp:

8p=—1,, Py —P)). (B.62)

Formulae (B.61) and (B.62) are boundary conditions of M and P (cf. above).

It was stated in Section B.3 that the equation of continuity (B.18) is valid for all
types of charges and currents separately. Equation (B.60) is also applicable to all
types of currents and surface charges separately provided the possible contribution
of the corresponding surface current is taken into account.

Let us now consider a plane boundary and assume a Cartesian coordinate system
whose z-axis is perpendicular to this plane. According to equation (B.57) the electric
field components £, and E), are continuous at the plane z =z, in question for all
values of x and y and at every time, ie.

E (x,y,29, ) =B, (x,7,2y,1) (B.63)
and ‘
E,(x,y,20,8) = E, ,(x,7,2y, 1) (B.64)

where x, y and ¢ are arbitrary. Taking the derivative 8/dy of equation (B.63) and the
derivative 8/0x of equation (B.64) and then subtracting yields

OF,, OE, OF,, 0K, (B.65)

ay ox  dy ox

for all x, y and ¢ at z=z,. The left and right-hand sides of formula (B.65) are
—(Vx E’l)z and —(V x E_z)z at z =z, respectively. Hence using Maxwell’s equation
(B.3) we obtain:

0B, 9B,

ot ot (B.66)

for all x, y and ¢ at z=z;. In other words, it follows from the continuity of the
tangential component of the electric field that the difference in the normal com-
ponents of the magnetic field on each side of the boundary is constant in time. If
it can be further assumed that this difference has vanished or will vanish at some
time the continuity of the normal component of the magnetic field stated by

formula (B.53) is obtained. At this point it can be pointed out that equation

il
A £ = 0, which leads to formula (B.66), is a direct consequence of Maxwell’s
equation (B.12) used in the derivation of formula (B.57) (¢f. the end of Section

B.1).
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For harmonic time-dependence (¢°’?, w # 0) equation (B.66) involves the con-
tinuity of the normal component of the magnetic field. Hence, when considering
time-harmonic fields the explicit use of the boundary condition (B.53) does not give
any new information if the boundary condition (B.57) is also utilized (cf. the com-
ment on equation (B.36) following from equation (B.37) in Section B.5).

The relationship between the continuities of the tangential component of £ and
of the normal component of 3B/d¢ and of B was established above in the case of
plane boundaries. However, since any surface can be approximated by a plane in a
small neighbourhood of its any sufficiently regular point, it is evident that the
conclusions of the relationship are not limited to the case of plane boundaries.

Similarly the boundary condition (B.58) concerning the tangential component
of f implies that the discontinuity of the normal component of the quantity
Terue + 0D/0t (see equation (B.13)) is equal to the negative divergence of K e
Using formula (B.52), equation (B.60) is then obtained for true charge and true
current, complete with the comment about true surface current mentioned above.
In analogy to Section B.3, an »inverse» relationship, which leads to the time deriva-
tive of equation (B.52), could also be presented. It was pointed out above that still
more boundary conditions could be derived from Maxwell’s equations. Thus the
discussion of the relationships between the boundary conditions could also be
continued.

B.8. Solution of an electromagnetic field from its sources

In principle it is possible to solve the fields E'(7, £) and B(7, t) from Maxwell’s
equations (B.1) —(B.4) if the sources p (7, £) and j (7, f) are known. This can be done
using a vector potential A(7, ) and a scalar potential ¢ (7, ¢).

It follows from equation (B.2) that

B=V=x4 (B.67)

where A4 is some vector function, called the vector potential. Substitution of 'equation
(B.67) in equation (B.3) gives

V x (E+ gﬁ) =0, (B.68)
t

so that

E=-V¢p— 94 (B.69)

ot
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where ¢ is some scalar function, called the scalar potential. From equations (B.1),
(B.4), (B.67) and (B.69) we obtain:

0 — p
2 + = . -
Vit (V- 4) € (B.70)
and
- - 0 024 . r
V24 - v(v- A+ pge, 37) — Ho€o 2 = ~Hol- (B.71)

Equations (B.70) and (B.71) look rather complicated. However, the fields £ and B
and hence the physics remain unchanged if A is changed to

A=4+Vy (B.72)
and ¢ is changed to

1OV

where (7, 1) is an arbitrary scalar function. Now (7, ¢) can be chosen so that

i

V-A' + e, g%=o, (B.74)
ie.

82 - d
VI gy 5=V A tgeq 50 (B.75)

The transformation included in equations (B.72) and (B.73) is known as a gauge
transformation. Choosing the divergence of the vector potential is called choosing
a gauge. If the relation (B.74) (the so-called Lorentz condition) is valid, the Lorentz
gauge is involved.

Let us now assume that the gauge transformation has already been made and the
vector potential 4 and the scalar potential ¢ in equations (B.70) and (B.71) satisfy
the Lorentz condition (B.74). Then

) a2
2 ¢ __ P
Ve —1y€q 372 e (B.76)

and

— 224 -
VA — pye, o2 = Mol - (B.77)
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It is seen that both potentials satisfy exactly similar equations. The solutions of
equations (B.76) and (B.77) are

pr,t———)
NN ,
800 = e =% £l arv (B.78)
and _
7(f't—5)
e r)=%%f ———ay (B.79)

where R = |7 — 7| and, as above, ¢ = (1y€,)"/? is the speed of light. The integra-
tion volume must include all points 7' in space where the source function in the
integrand differs from zero to obtain a complete solution. The time of the source
fields is retarded from the time of observation by an amount equal to the time
taken by light to travel from the source point to the point of observation. There-
fore the potentials (B.78) and (B.79) are called retarded potentials. Mathematically,
advanced potentials where the time of the source fields is £ + R/c are also accept-
able. However, they seem to violate causality and are excluded. By direct calcula-
tion with the equation of continuity (B.18) it can be shown that equations
(B.78) and (B.79) satisfy the Lorentz condition (B.74) provided the integral

(251

fda'n"j(r', t—(R/c))/R vanishes as S goes to infinity.

s Using equations (B.67), (B.69), (B.78) and (B.79) the electric field and the
magnetic field are obtained:

(7 = ‘m]}_?_ 4 _1_ LA]E '_L m ’

Er v e, (J =3 dv +Cf 2 dv 7 J 2 a"V) (B.80)
and

B(r, 1y = (f m);R av’ +lf [j]];R dV’). (B.81)

The dot above a symbol means the time derivative, the square brackets denote
retardation and R = 7 — r'". If the surface integral fda'fi’- [7]R/R? vanishes when

__ S
S goes to infinity the expression of E(r, ¢) can be developed further:
E—(F,f)_—(fl—]—dV-i‘ j(_L]_ Ll)dV 2IM%ﬂdVI>.

(B.82)
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The equation of continuity (B.18) is also needed in the derivation of equation
(B.82) from formula (B.80). The last terms of equations (B.81) and (B.82) rep-
resent the so-called radiation fields.

The above formulae of this section can be extended to the case where Maxwell’s
equations (B.23), (B.2), (B.3) and (B.24) are satisfied with time- and space-constants
e and w; p(%, 1), J (7, 1), Mg, €, and ¢ = (ye,) /2 have simply to be replaced by
PeraeTs Dy Torae(Bs 1) 1, € and v = (uey V2 If 7, now depends on E, as for ex-
ample in Ohm’s law (B.25), equations (B.80) and (B.82) are integral-differential
equations for the electric field, and the situation is complicated.

Let us, however, treat the case where J,,,,, can be expressed as f,,,,,= o0& +j,.,.
in a different manner. The current j,,,, is considered an »externaly current. The
introduction of a vector potential A(7, £) and a scalar potential ¢(7, £) according
to formulae (B.67) and (B.69) satisfies Maxwell’s equations (B.2) and (B.3). Equa-
tion (B.23) then yields formula (B.70) with p/e, replaced by p,,,Je. The equation
corresponding to formula (B.71) can be written as

a9

- — 9o
V24 —V(V-A + + ue —) — U €
ppp + u M or o2

v = e - (B.83)

This equation suggests that the »reasonable» Lorentz condition is now

V-Z+ua¢+ue%=0. (B.84)
This equation is made valid with a gauge transformation (B.72) and (B.73) where
Y satisfies the equation

] 2* - )
V2w—uo~5‘g4ue-aTw=—V-A—ua¢—ue -a% (B.85)

(cf. formulae (B.74) and (B.75)). In analogy to the discussion above we assume
that the Lorentz condition (B.84) is satisfied by 4 and ¢. From equations (B.70)
with p,, /e and (B.83) it follows that

2y, 00 3% Prrue
V¢ — uo or ke o . (B.86)
and

- o4 24
V4 — uo E— ME ? = —Wipye (B.87)



148 Risto Pirjola

Both ¢ and A again have exactly similar equations, but it should be noted that

the right-hand side of formula (B.86) involves the total true charge, while ]'_t'me
appearing in the right-hand side of equation (B.87) merely designates the vexternaly
true current.

Equations (B.86) and (B.87), which also contain the first time derivatives of
the potentials, do not in the general case have solutions as simple as formulae
(B.78) and (B.79) are for equations (B.76) and (B.77). Let us, however, consider
a harmonic time-dependence e’“? (w > 0). Then using formula (B.41) equations
(B.84), (B.86) and (B.87) can be expressed as

va+® gy, (B.88)
w

V2¢ + k2 = — % _ (B.89)

and

VA + kA =i, - (B.90)

But with harmonic time-dependence equations (B.74), (B.76) and (B.77) connected
with free space can be written in exactly the same form, utilizing the propagation
constant &, of free space:

ko = w\igeg ==, | (B.91)

which is real and non-negative. Hence, obviously, the results concerning free space
are also formally applicable to Maxwell’s equations (B.23), (B.2), (B.3) and (B.24)
with J,,,,.= 6E + [, and with a harmonic time-dependence; e, will be replaced

by €, iy by y, ¢ by w/k, p by py,,,.and jby j, . (see also formula (B.42)).

.The discussion of this section implicitly presumes that Maxwell’s equations are
valid everywhere in three-dimensional space and at every time involved. Hence,
according to Section B.1, the sources p(F, £) and j(7, t) should be continuous and
finite. Thus idealized abrupt changes are in principle not permissible. They can,
however, be regarded as limits of rapid but continuous variations, for which the
above discussion is valid. This implies that formulae (B.78)—(B.82) containing
integrals are obviously applicable for such idealized discontinuous sources. If
Dirac delta functions are involved in the expressions of the sources, infinities
appear in addition to discontinuities. Let us, however, refer to Section B.1 and
assume that the use of equations (B.78)—(B.82) is also permissible then.
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B.9. Poynting vector
From Maxwell’s equations (B.3) and (B.4) it follows that

A7 _1—)___—.7_ =0E 1 5 0B
Y (Ex MOB ==L ]~ ek, #OB 5 - (B.92)

Let us integrate this equation over a volume ¥ which is enclosed by a closed
surface S. Gauss’ theorem then gives

3 _) . _ ( _BF 1 - aE)
Ex —B|-nda+ | E-jdV=— E-— +—B-—]dV. B.93
( " e nda J ‘_/feo ot Tug B (B.93)

w9,

This equation is called Poynting’s theorem and it can be interpreted as follows:
The right-hand side represents the rate of decrease of the electromagnetic field
energy within V. The second term of the left-hand side is the work per unit time
done by the field in V (¢f. Section B.2). The first term on the left-hand side is
the flow of electromagnetic energy out of ¥ through S. The vector
F=1ExB (B.94)
Ho

is called the Poynting vector. Poynting’s theorem may also be written in a slightly
different form which can be derived from equations (B.12) and (B.13). Then the
Poynting vector is defined as £ x /.

The Poynting vector was introduced as an integrand in equation (B.93). This
equation does not change when an arbitrary vector whose divergence vanishes is
added to the Poynting vector. In other words, the surface integral of the Poynting
vector over a closed surface is the only thing that has significance. However, on
the grounds that the Poynting vector is also related to the momentum and angular
momentum of the electromagnetic field, evidence is obtained that the Poynting
vector really gives the space distribution of energy flow in an electromagnetic
field (FUrRRY, 1969, ROMER, 1966 and 1967).

Since the Poynting vector is the product of two physical quantities, the real
parts must first be taken before multiplication if the electromagnetic field is
mathematically described with complex quantities (see Section A.1). However, it
is easy to show that the time average over the period of the product of two
physical quantities oscillating harmonically with time (with «w # 0) is equal to
half of the real part of the product of one complex quantity and the complex
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conjugate .of the other. Hence the time average of the Poynting vector of an
electromagnetic field with a harmonic time-dependence is

(M) = ReN, (B.95)

where NV, is the so-called complex Poynting vector defined by

¥ =L Fyp*
N, = g ExB (B.96)

As an example, let us consider the Poynting vector of the electromagnetic plane
wave given by equations (B.48) and (B.49) with £, = 0. Then
k* . k*E -E*

N —— 5 2 F*\prik—k®)z _ 0 ,2kyz 3
N, Piges E, x (e, x Ey)e TS e, (B.97)

where k, denotes the imaginary part of k and the fact that E is perpendicular

to e has been utilized. Equations (B.95) and (B.97) imply that

o =F1Ee By ey (B.98)
PJINS) z

in which the real part of k has been denoted by k. Because k, is positive, the

evident result that the energy flows on average in the direction of the phase propa-

gation is seen from formula (B.98). The other possible Poynting vector, ie. £ x H,

would lead to a time average equal to (V) given by equation (B.98) multiplied by

a positive factor u,/u, and so the conclusion of the direction of the energy flow

would not change. The directions of phase propagation and of the Poynting vector

need not be equal, and it is the latter that is more important.

B.10. Principle of superposition

A very important principle in the discussion of electromagnetic fields is the so-
called principle of (linear) superposition. It states that the electromagnetic field
caused by several sources is the sum of the fields produced by each individual
source separately. Here the source is any charge and current distribution satisfying
the equation of continuity (B.18). The linearity of Maxwell’s equations with respect
to the fields and sources is consistent with the principle of superposition.
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Appendix C. On cylindrical electromagnetic fields
C.1. Poynting vector of a transverse magnetic cylindrical electromagnetic field

Let us consider an electromagnetic field whose time-dependence is harmonic
(€'*, w > 0) in a »simpley medium characterized by a permittivity €, a per-
meability u and a conductivity . We assume that no »external» currents exist.
The field then satisfies Maxwell’s equations (B.35)—(B.38). Let us use cylindrical
coordinates p, v and z and assume that the field is independent of ¢ and the z-
dependence is given by e"/%* where ¢ is a complex constant different from the
propagation constant k of the medium (formulae (B.41) and (B.42)).

Equations (B.37) and (B.38) can be written in component form as formulae
(4.11)—(4.16) with J equal to zero and i e, replaced by u(o + iwe). Hence
the components £, E, and B o are independent of the components £ o By and
B,. We now assume that the latter are zero. Thus the magnetic field has only a
w-component, which implies that the case is transverse magnetic (TM).

It follows from the wave equation (B.43) that E, satisfies equation (4.7) with
the right-hand side equal to zero and k in the definition of n replaced by k (for-
mulae (4.8) and (4.9)). The equation is Bessel’s differential equation of the zeroth
order (A.20) and so the general solution for £, can be expressed as

E,(p, 2, t) = (FH(np) + DH{P (np))e’ 4 . (C.1)

The components £, and B , are obtained using formulae (4.17) and (4.18) and
substituting —iu(o + iwe) for wiye,:

i (ot
E,(p.2,1) = 7" (FHD(np) + DHP (np))e~a2) (€2)
and
B = (o + icwe) FHD(np) + DH® mp gi(wt—qz) (C.3)
L4 n 1 1

A direct substitution shows that this electromagnetic field really satisfies Maxwell’s
equations (B.35)—(B.38), the first two of which are consequences of the two
latter.

Using equations (B.41) and (C.1)—(C.3) the complex Poynting vector (B.96)
has the expression
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AT — 1 - * A A
N, = " CEB, + 5,B,E) (C.4)
_ TR 20 2@ (O
= 2eom [k n(1FVH (np)HV* (np) + IDIZHP (np)HP* (np)
0

+ F*DHP (np)H{"* (np) + FD*H{ mp)H™ (e))?,
+ K 2q(IA2 1HD (mp)l* + DI |HP ()i
+ F*DH{M*(np)HP (np) + FD*H{ (o) H* (np)) 8,

Let us assume that p approaches infinity and substitute the asymptotic expressions
(A.58) and (A.59) in equation (C.4). Then

_ e2q22
e & 3 [
Ty Inl"p

— i(F*De”*™MP + FD*e?MP))e + k*? q(|F|2e 2P

K*2n(—|F|? e®M2f + |D|? ¢?2P (C.5)

+ |D|2e?M2P + {(—F*De 2P + FD*e2MPY)¢ |

where n; and 7, are the real and imaginary parts, respectively, of 1, and Imgq is
denoted by q,.
If D equals zero and F # 0, it is obtained that

— F 2,29,z . A A
N, = [F7e™27 (@ HO mp)H* (p)e, + k*2qIHM(np)|2¢,) (C.6)
2wpglnl?
~ a;(p, )K" (—ne, + qe,)

where the real and positive function |F|2e?"2° ¢292% /o In|>p is denoted by
a, (p, z). Using equation (B.95) and writing q, = Req, §, = Rek? and B, = Imk?,
formula (C.6) gives the following expression for the time average of the energy
flow:

(N = ay (p, 2)(B,(—n,€, +4,8,) + B,(—m,8, +4,8,)) . (C.7)
Similarly in the case F = 0 and D # 0 it follows that

(N) = ay (o, 2)(By (1,8, + a1 6;) + B,(n,8, + 4,¢,)) (C.8)

where the real and positive function |D|?e?"2°¢292% [meop,Inl>p is denoted by
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ay(p, z). If 0 <arg n <7/2, o) (p, z) and e, (p, z) exponentially approach zero
and infinity, respectively, as p approaches infinity. If —m/2 < argn < 0, the limits
are conversely.

By considering equations (C.1)—(C.3) and the asymptotic expressions (A.58)
and (A.59) of the Hankel functions it can be seen that in both cases, D = 0 and
F =0, the vectors multiplied by §, and §, in equations (C.7) and (C.8) give the
direction of the propagation of constant phase and the direction of the exponen-
tial increase of the amplitude, respectively. In other words, whichever Hankel
function is chosen to represent the p-dependence of the electromagnetic field in
question, the direction of the time average of the Poynting vector is equal to the
direction of the vector: Rek? times the direction of propagation of constant phase
minus Imk? times the direction of exponential attenuation. These direction vectors
are not unit vectors or equal in length but those appearing in formulae (C.7) and
(C.8). According to equation (B.41) Rek? is positive and Imk? is non-positive.

In the special case of a non-conducting medium Imk? is zero and then the di-
rections of the average energy flow and of the propagation of constant phase
coincide. It follows from the defining equation of 1 (4.8) that if Imk? equals Zero,
then n and g satlsfy the equation n,m, = —qq,, and hence the vectors +n1
qlez and +n2 - q2 _» Le. the directions of propagation and attenuation, are
orthogonal in both cases D = 0 and F = 0 (¢f BArLow and CULLEN, 1953, p. 336).

If both phase propagation and exponential attenuation with respect to a space
coordinate (o or z) take place in the same direction, the energy flows on average
in the same direction with respect to this coordinate. If no phase propagation or
no exponential attenuation occurs in a space coordinate, the energy flows in the
direction of the only occurring. However, in a non-conducting medium the vanish-
ing of phase propagation with respect to a space coordinate makes the energy
flow vanish in this direction. If both phase propagation and exponential attenua-
tion with respect to a space coordinate vanish, no energy flow with respect to
this coordinate takes place.

Using equation (C.5) the energy flow for any linear combination of the Hankel
functions of the first and second kind can be studied. For example, if the medium
is non-conducting and F and D are equal, we obtain:

2|F|2e 227 k*

(N) 3
Twylnl~e

Q

((nysinh 2n,p + 7, cos 2n1p)é\p + (g, cosh2n,p — q, sin 2171p)é\z).
(C.9)
Let us assume that 7, is positive. Since p is large, equation (C.9) then reduces to

(N)~ az(plz)k2(n1€p +q1'e\z), (C.10)
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but this is exactly the expression-obtained from equation (C.8) with 8, =0. The
result simply establishes that it is the infinitely growing function Hv(2) (np) that is of
importance for large values of p.

The same results as regards the direction of the energy flow would also have been
obtained in this section with the employment of the other commonly used Poynting
vector N' ='E x fI (cf. Section B.9).

C.2. Surface waves

It seems that the question of the directions of propagation and attenuation could
be treated more thoroughly than usual in the literature. A basic condition for con-
sidering the propagation and attenuation of an electromagnetic field of the type in
Sections 4.2 and 4.3 is that the complex half plane where the quantity corresponding
ton of formulae (4.8) and (4.9) lies is clearly defined. (An example of the importance
of the correct choice of the half-plane, i.e. the branch or the sign, of a square root is
the famous »error in sign» in Sommerfeld’s paper (SOMMERFELD, 1909), where the
electromagnetic field caused by a vertical electric dipole at the interface between
two half-spaces of different electromagnetic properties is discussed (WAIT, 1964,
pp- 158—159; NORTON, 1935; NIESSEN, 1937; STRATTON, 1941, p. 585). Sommer-
feld subsequently published another paper on the same subject and without the
error (SOMMERFELD, 1926).)

Let us now briefly consider Stratton’s treatment of cylindrical waves (STRATTON,
1941). On page 360 he establishes that the Hankel function of the first kind is related
to a wave which phase-travels asymptotically radially outwards. He has not explicitly
defined the half-plane of the quantity v/k2- A2 appearing in the argument of the
Hankel function and corresponding to the above-mentioned 7, but taking into
account formula (A .58) of this work and the time-dependence e’ * used by
Stratton, it is obvious that the real part of v/k2—h? is positive.

When discussing the propagation of electromagnetic fields along circular cylinders
Stratton has chosen the Hankel function H " for the fields outside the cylinder »to
ensure the proper behaviour at infinity» (STRATTON, 1941, p. 524). The nature of
this »proper behavioum is not explained. However, considering the numerical example
on Stratton’s pages 529530, where the field propagates along a copper wire situated
in the air, it can be shown that the argument of the Hankel function H®) has a
negative real and a positive imaginary part. Hence the corresponding field propagates
asymptotically radially inwards, thus differing from the statement on page 360. This
also conflicts with Ikrath’s reasoning on the same topic (IKRATH, 1957, pp. 24—25).

The positive imaginary part of the argument makes the field damp exponentially
outwards. So the field is confined to the neighbourhood of the surface of the cylinder
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along which it propagates. Such an electromagnetic field is a so-called surface wave
(Gousau, 1950, BARLOW and CULLEN, 1953, SOMMERFELD, 1959, p. 156, WarT,
1964, JonEs, 1964, pp. 415—437).

An electromagnetic surface wave is defined as an electromagnetic field that
propagates without outward radiation along an interface between two different
media (BARLOW and CULLEN, 1953, p. 329). It is known from optics that there
is a special angle of incidence, the so-called Brewster angle, for which there is no
reflection for a wave polarized in the plane of incidence (e.g. STRATTON, 1941,
pp. 497 and 516). Thus a polarized wave of this kind incident on a surface at the
Brewster angle, which is complex in general, is evidently a surface wave (BARLOW
and CULLEN, 1953, pp. 329 and 335, STRATTON, 1941, pp. 516—-524). On their
page 329 Barlow and Cullen discuss a discrepancy in the use of the word »surface
wavey, which is related to Sommerfeld’s above-mentioned »error in signy.

The most important instance is where the external medium is non-conducting,
for example to a good approximation air, which is also assumed here. Since the
outside medium is loss free and outward radiation may not occur, all energy flow
has to take place along the surface and inwards.

The case in which both media are infinite half-spaces and the interface hence
a plane and no transverse space-dependence occuis is the easiest one to treat
theoretically (ZENNECK, 1907, BARLOW and CULLEN, 1953, p. 330, SOMMER-
FELD, 1959, pp. 160—161). Propagation of a surface wave along an infinitely long
circular cylinder, discussed e.g. by STRATTON, 1941, pp. 524—537, as mentioned
above, also has a simple theoretical description (see GoUuBAU, 1950, pp. 1119—
1123, BArL.ow and CULLEN, 1953, p. 331, SOMMERFELD, 1959, pp. 177—185):
If no p-dependence appears the transverse magnetic field inside the cylinder is
expressed by equations (4.10), (4.19) and (4.20) with J =0 and with the electro-
magnetic parameters characterizing the material of the cylinder. The coefficient in
formula (4.20) will then change to [u{o+iwe)/n] cyr- Outside the cylinder the transverse
magnetic field is described by equations (C.1)—(C.3) with the parameters of the
outside medium and with /=0 or D=0 such that the field is attenuated outwards.
The latter requirement ensures that the field is confined to the vicinity of the surface.
Since the medium is non-conducting, it further implies that the phase propagation
occurs inwards, if ¢ satisfies formula (4.2). Then the energy also flows inwards (see
Section C.1). The boundary conditions at the surface of the cylinder constitute two
linear homogeneous equations for the unknown coefficients, and in order to have a
solution the determinant of this system of equations must vanish. This leads to an
equation for the longitudinal propagation constant ¢, which is thus not arbitrary.
The equation is transcendental, and g has no general explicit solution.

If a metal cylinder (or wire) situated in the air is considered, the transcendental
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determinant equation may be approximated and solved quite simply by iteration
(STRATTON, 1941, pp. 528539, SOMMERFELD, 1959, pp. 182—-185). The
approximation depends on the radius of the wire and on the frequency as seen in
these authors’ examples, which concern the so-called principal wave. With the numeri-
cal values of these examples the above-described solution shows that the longitudinal
propagation constants lie in the fourth quadrant of the complex plane according

to formula (4.2). In fact, in the mathematical calculations Stratton and Sommerfeld
use the opposite sign in the exponent describing the longitudinal space-dependence
and the time-dependence, to the discussion in this work. Therefore the longitudinal
propagation constants presented by Sommerfeld and Stratton are situated in the
first quadrant.

I have also studied theoretically transverse magnetic waves propagating along a
plane or along a cylindrical surface and dealt mathematically with the case in which
the probably unphysical solution is chosen to describe the transverse space-dependence
of the electromagnetic field in the outside medium, i.e. the outward increasing
function. It can be shown that with fixed parameters of the media the determinant
equation allows only one solution for the outward perpendicular space dependence
in the case of a plane surface. But in the case of a cylinder, the determinant equation
may give solutions with both choices of the Hankel function outside the cylinder.

T have shown this numerically for the values of the example of a copper wire presented
by STRATTON, 1941, pp. 529—530, and by SOMMERFELD, 1952, pp. 183—184. The
following statements are also based on calculations using these numerical values.

The value of the longitudinal propagation constant calculated from the determinant
equation varies according to the choice of the Hankel function. In the case of the out-
ward growing Hankel function, with the use of time-dependence e?*? the same
solution from the determinant equation is not obtained as with ¢/“’*, though these
time-dependencies are physically identical. This contradiction, however, seems to
be merely apparent, since the solution obtained with 7 exists in the case of e/’
in another branch of the Hankel function (see Section A.6). If the outward attenuating
Hankel function is used, both choices of the time factor give the same result directly.

On the other hand, a mathematically acceptable solution to a problem may be
quite unphysical. Hence the fact that the outward increasing case permits a mathema-
tical solution does not remove or decrease the significance of the unphysicality caused
by the infinite growth when moving outwards from the cylinder. However, let us
still refer to the exponentially infinite growth in the —z-direction, which also seems
unphysical. As pointed out in Section 4.2, such an idealization might cause other
unphysicalities, too.
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