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Abstract

Basing on observations that a substorm often begins in a small local time
sector, a mode] is assumed in which the neutral sheet current is diverted
around a small disturbed region. A simple assumption is that the current
varies linearly with distance from the centre of the disturbance in the x
direction in a solar-magnetospheric (SM) coordinate system, and that the
diverted current is channeled within narrow paths 5., wide on the dawn
and dusk sides of the disturbed area. The vector potential integrals of the
assumed cusrent pattern and the corresponding electric and magnetic field
components are evaluated analytically. The introduction of the disturb-
ance current loop into the magnetotail results in a magnetic field structure
in which new neutral lines of the X and O types can be observed; these
are connected to each other in a continuous neutral ring on the xy equa-
torial plane. The magnetic and electric field components around the
neutral regions are given. It is demonstrated that this type of field struc-
ture is capable of accelerating particles to high energies owing to linear
and betatron mechanisms. The model formulation reveals electric field
components along the magnetic field lines. Field-aligned acceleration in
a tyrical substorms situation is demonstrated with an example of electron
ene.gization from 1 keV to 21 keV in 1.1 seconds. The model is further
tested by taking typical values of the defined parameters based on observa-
tions within the magnetotail. The induced electric field is found to be
comparable to the average cross-tail electrostatic field, and it may well be
orders of magnitude greater. The model agrees with present observations
on the onset phenomena.
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1. Introduction

In a series of publications (HEIKKILA and PELLINEN [10], PELLINEN and
HEIKKILA [16], PELLINEN [15]) we have developed a theoretical model to
describe phenomena during the onset of magnetospheric substorms. This paper
gives technical details on the calculations involved in developing the model.

The construction of the model is based on the following empirical data:

a) The onset of the expansion phase of a magnetospheric substorm is characterized
by sudden localized changes in a small region of the magnetotail (ROSTOKER
and CAMIDGE [17]).

b) Most observations made with magnetometers carried on spacecraft show mag-
netic fluctuations in the magnetotail.

c) Bursts of particles, electrons and protons with energies up to one MeV or more
have been reported, generally in association with magnetispheric substorm
activity (HONES et al. [11], SARRIS ef al. [18], [19], TERASAWA and NISHIDA
[20], KIRSCH et al. [13], BAKER and STONE [3]).

d) Field-aligned currents have been observed at the onset of a substorm. These are
associated with the precipitation regions of auroral particles (ARNOLDY [2]),
which have been extensively studied optically (e.g. Fukunisui [9]).

e) Large-scale convective plasma flows, both earthward and tailward, have been
observed during magnetospheric substorms. Their velocities seldom exceed 1000
km/s (HONES et al. [12], FRANK et al. [7]).

Present knowledge on auroral phenomena has been taken into account in addi-
tion to the above observations (e.g. the similarity of simultaneous auroral forms
over both hemispheres).

The following results of theoretical works have also been used:

a) Self-consistent calculations show that the neutral-sheet current is carried by
plasma sheet particles on closed field lines, due mainly to curvature drift and
partly to gradient drift (BIRD and BEARD [5]).

b) The cross-tail current is diverted along the magnetic field lines as a Birkeland
current down to the ionosphere, where it is carried along by a westward elec-
trojet (BOSTROM [6]).

Basing on the results summarized above, onset phenomena can be discussed
qualitatively and significant conclusions can be reached, but no mathematical model
can be derived. However, a mathematical model for current perturbation (HEIKKILA
and PELLINEN [10]) is needed for detailed calculations, and we have chosen a very
simple one in which the cross-tail current in a local region of the neutral sheet
grows linearly from the centre of the disturbance, and the current lines are closed
by narrow sheet currents in the x direction at the border of the disturbance (Fig-
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Figure 1. Geometry of the magnetotail current, with a time-dependent diversion of the neutral
sheet current around a localized bubble.

ures 1 and 2). This model is based on three main assumptions (PELLINEN [15]).

1) The displacement current is disregarded because it is several orders of magnitude
smaller than the particle current (HEIKKILA and PELLINEN [16]).

2) the perturbation is restricted to the plane of the neutral sheet, i.e. 7, = 0,
81, =—8J,

3) there are no disturbances in the currents outside the rectangular disturbed area
in Figure 1.

The disturbance is limited to the area —¢ < x < +g and —b < y < +b, and
grows with the velocities v, along the x axis and ty, along the y axis. In our
coordinate system the x axis points towards the earth, y axis towards dusk, and
z axis northwards. The origin is located at the centre of the disturbance. We define
the current densities in a local region of the neutral sheet as follows
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Figure 2. In our mathematical ad-hoc model, the disturbance is assumed to be rectangular in
shape, with linearly increasing amplitude and size.
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where J,, is the cross-tail current density and j the current disturbance.

We assume that the accompanying x-directed currents are limited to narrow
regions of width 6 where y = +b. The current density is assumed to be constant
over §. Basing on the continuity equation for the currents we can write
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The parameters a, b, and j defining the geometry of the current density distribu-
tion are dependent on time.

The current perturbation, (1.1) and (1.2), has a vector potential 4 (7,¢), which
can be used to estimate the disturbed magnetic field from V x A(,7). To study
the tail phenomena, this magnetic field must be added vectorially to an appro-
priate tail field that closely corresponding to the situation at breakup, with a thin
plasma sheet and stretched taillike structure. BIRD and BEARD [5] have derived
a suitable field model with a thin neutral sheet current that varies slowly in
strength with distance down the tail. This field model and the disturbed field are
described and matched in section 2.

According to our assumption, the disturbance grows continuously during the
onset. This leads to a temporal development of the vector potential, and hence to
and induced electric field that can be calculated from the equation E* = —3A4(r,1)/dt.
The regions in which the magnetic field drops to zero are of interest when con-
sidering the energization of charged particles (TERAsAWA and NisHIDA [20]). We
will discuss these regions in section 3 and the energization in section 4.

The forms of E* and disturbed B are rather complicated. Numerical treatment
is easiest with a computer. The treatment and representation of the parameters
may create some problems. This is discussed in section 5.

Our model will be discussed in section 6.

2. Disturbed magnetic field in the magnetotail
The vector potential of the current perturbation is

e _ IJ_O f(;lrt) !
At =32 TI o ar 2.1

The total vector potential for the tail current system can be written as:
A=A, + U, + A, + A, 5+ AL, + AL, + AL+ A% (22)

A, + A,y is the unperturbed part, where 4, is due to the rest of the circuit; and
must be evaluated before the total magnetic field can be specified.

The integrals in the proposed current system of equation (2.1) can be evaluated
analytically, as stated by MURPHY ef al. [14]. After inserting equations (1.1) and
(1.2) in (2.1), we get
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Some expressions in these formulas are abreviated as follows:
C* = [(x - &% + (v ¥ b)? +22]
fi=b+y, fr=b-y g=8+2% =g+

Q;=fitl, U=(Q;—%/z and i=1or2.

The next step is to calculate the magnetic field created by the disturbance
current j. The equation

B=Vx4d 2.5

2.6)
A A A
=B.Xx+ Byy + B,z

After straightforward but lengthy calculations we get
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where
Sy ==—x, S4=2a-x S;=—2a-x, ;=g + A
g = S2+z% Ry=22>—f2-2% Q=f+(g+H"

-1 —[C2 £2 2771/2 — 1l -1
Uij— Z [Q; — Si1 ij_[Sj_l_fi + 275, Kij—[Cij + 5]

To investigate the effects of introducing such a perturbation to the magnetotail,
we have chosen the simple tail model used by BEARD ef al. [4], with a thin neutral
sheet current whose strength decreases slowly with distance down the tail. The tail
model modified for our purposes is:

B, = 217]0@ 0(2) (2.10)

where
0(z)=+1, whenz >0
0(z)=—1, whenz <0
6= 0, whenz=20
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B, and B, can be transformed to cartesian coordinates B), and B, with the
following transformation forms.

Y
By = B, sinf + B, cosf, sinf = ﬁ
(2.13)
z
B, = B,cosf — By sinf, cosf= \—/ﬁ

where J0 is the current in the neutral sheet, on its inner edge x.
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3. Induced electric field

The vector potential (2.1) has three time-dependent parameters @, b and j.
Temporal changes in the vector potential result in an induced electric field:

P 9j 94 da 94 3b 34 -
i~ 3tdj ot oa ot db G

The first term corresponds to the-changes in the current density, the second to
the tailward movement of the conducting plasma, and the last to the east-to-west
movement of the disturbance. In our current system, a = a(t), b = b(¢t), so

da da v, ob db
t adr 2 and ot ar v
dj 04, v, 04,  0A,
x T ot F_’z_ 3z ¥ ab
(3.2)
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Starting again from equations (2.3) and (2.4), we receive
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Similarly Ey can be written as:
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According to present knowledge, the only permanent electric field existing in the
far tail region is the irrotational field directed over the tail from dawn to dusk.
This field must be taken into account when the total electric field content of the
tail is estimated at the onset of the substorm.

4. Particle energization

The kinetic energy of a charged particle changes as it moves through an
electromagnetic field. The rate of the energy change can be estimated as

dw=F - ds “4.1

where F is the Lorentz force acting on the particle, and ds is an infinitesimal
distance along the particle trajectory. Only the electric Lorentz force acts on
particles because ¥ x B - dS = 0. Hence only an electrostatic field or a rotational
electric field due to changes in the magnetic field is able to change the energy of
a charged particle.

Our model includes both magnetic and electric fields changing in time. To study
particle energization, we must know the movement of a given particle and the
temporary electric field components at each point on its trajectory during a given
time interval. So in a computer simulation, three main problems must be taken
into account: 1) the change of the particle velocity, 2) the change of the electro-
magnetic fields, and 3) the change of the particle mass (mainly as regards electrons).
All these affect the length of the integration step along the trajectory of the
particle.

Since guiding-centre approximation does not give the real particle trajectory,
and may even be non-valid in some regions of the tail, the only way to treat the
movement of the particle is to start from the relativistic equation of motion:
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This can be written in component form

d
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Making the following transformation
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we can write equations (4.3) in the forms
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4.2)

4.3)

(4.4)

(4.5)

(4.6)

u, ¥, and w can be solved from the last three equations. As a result we get a set

of differential equations
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Figure 3. Kinetic energy gained by an electron from the parallel component of the induced
electric field in the palsma sheet above and below the neutral sheet. The initial gain in energy
is due to the negative meander, and the subsequent loss is due to the positive meander on the
dusk side.

X=u, y=v, z=w

u=u(x y, z u v, w @)
V=190, z, u v, w)

w=wx, y, z, 4, v, W),

which can be solved numerically by the fourth-order Runge-Kutta method (e.g.
FROBERG [8]). Time dependence can be taken into account by calculating new
field values for each point along the particle trajectory at a basic time interval of
10"* seconds; the time interval must be decreased gradually in the relativistic
region to keep the numerical method- valid. '
For practical computations we have to know the initial location (x, y, z),
kinetic energy and pitch angle of the particle. If we wish to study its field-
aligned acceleration, we can use the total electromagnetic field of our model and
trace the motion of the particle according to equations (4.7). Figure 3 shows an
example of the longitudinal acceleration of an electron originally with a pitch
angle of 90°, launched close to the neutral sheet in a region where the induced
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E,, component is large. The electron first reaches nearly 50 keV over the negative
meander on the evening side; but if the positive meander is equally strong, the
electron encounters some deceleration before it leaves the region of the disturbance
toward the earth. Not all of its energy is lost, however, owing to the divergence
of the magnetic field lines away from the neutral sheet, and the consequent
attenuation of the induced electric field. In this example the electron reaches the
plane at the point where x = —20Ry with 21 keV.

For betatron acceleration we must use the electric field and B, in our model.
Our main interest is in tracing particles with a pitch angle of 90° in the neutral
sheet. For practical reasons (discontinuity in B where z = 0) we have to make the
analysis on some plane close to the neutral sheet, e.g. where z = 0.1 Re, and drop
the B, and B, components. Examples of numerical calculations are given in
PELLINEN and HEIKKILA [16].

5. Parameter representation and numerical results

The disturbed magnetic field (equations 2.7...2.9) and induced electric field
(equations 3.3 and 3.4), include six different parameters, whose values have to be
obtained by observation. These parameters are the geometrical parameters a and b,
current parameters 9j/0¢ and f, and velocity parameters Ve and v,

From numerical computations, we wish to obtain the electric field values in
the equation mV/m = 103 V/m, and the magnetic field values in nT = 10°° Vs/m?2.
Formulas (2.7...2.9) include the coefficient Moi/4m, giving the order of magni-
tude of the magnetic field. By definition:

o _ o7 Tm
i 10 A

. . . 2 A .
This means that if we insert the current values around 10 m» We get magnetic
fields of the order of nT. In the computer treatment we use

. . mA
7= 10— (5.1)

where (j) is a dimensionless number defining the value of the current. Since the
cross-tail current in the far tail region is typically 10...25 mA/m (depending on
the model and nature of the substorm), we can safely say that () is less than 10,
assuming the disturbance current is of the same order of magnitude.

For the geometrical parameters we use one earth radius Ry as the scale, hence
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a =(a)Rg

5.2
b=(b)Rg (5:2)

Ry is not usually needed explicitly, except in the 8j/d¢ terms of the electric
field components. For instance, Ey in equation (3.4) must be treated in the
following way

u
i (— —+Z dimension R2 ...]

y” 4ma 2_) L
_“0( ”i])i s p2
= an 5 )2 [dimension Ry ...]
Ho I “0
where 47r at < > ms (a)RE

=<3;>(a) 6.37 %

o
37 > and (@ ) are dimensionless numbers.

According to the above analysis, the correct magnitude for the electric field
will be obtained if we use

where <

9 (aJ

= at>637 (5.3)

9]
in the numerical computations. The magnitude of < 3 t> can be estimated from

magnetic field observations in the velocity independent approximation

B=vVYxA and hence Z—B—V BA
2B oA 3j 94, t) 9j
ar _ vx o1 vxat oj _ ot
B COA(F, t i

v x V"’a(—;) i
where

A, 1) =j(9) A(F) and hence 4 (7) =a—A;L].’—’~Q

In the model calculations we can start from the assumption that the cross-tail
current in a local region of the tail drops to zero in time Az In our earlier paper
(PELLINEN [15]) we assumed that the current density (/ = 26 mA/m when
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x = —30Rg) decreased to zero in 20 seconds. Hence 8j/d¢ = 0.13 x 10 mA/ms.
This corresponds to 3B/d¢ = 6 nT/min in the neutral sheet (where B is typically
around 2nT), which is in fair agreement with observations.

The plasma flow velocity terms of £ have coefficients (11,/4) vj. If we choose
the formula

y = (»)10° ?_, (54
we get
Ho o Vs

70 s s - 6 M
an (7> 10 2 (y) 10 S

—(ymnY
m

Since the observed flow velocities in the magnetotail vary from 0 to 1500 km/s,
(v) will obtain values between 0 and 1.5.

In energization problems the unit of length is Ry and speed is given in velocity
of light. Hence we use the following unit of time:

r=ct=3x10° Txs=47.0883 Ry

7=(1)x 47.0883 R (5.5)

(7) is a dimensionless number expressing the number of seconds counted
during the acceleration.

In our previous papers (PELLINEN and HEIKKILA [16], and PELLINEN [15])
we gave numerical results on magnetic and electric field values. We also described
the temporal development of neutral line regions and the growth of particle
energy in certain simulations. Here we return to this topic and give further
details on the electromagnetic field structure, mainly around the neutral line in
the equatorial plane (actually on the planes Z = 1Ry and Z = 0.1 R;; owing to
the difficulties due to discontinuity discussed earlier in this paper).

Figure 4 gives the isocontours of the disturbance field B, on the plane where
Z = 1Ry, 15 seconds after the onset of the substorm. The current disturbance is
shown by the rectangular dotted line. The current density j, is 6.5 mA/m and in
the middle of the disturbance and 32.5 mA/m on the outer borders. A typical
feature of the magnetic flux produced by the loop-type currents can be seen in
figure 4: the flux is very dense inside the loop; outside the loop the density is one
order of magnitude lower.
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Figure 4. Isocontours of B, at Z = 1 Rg. The current disturbance is indicated by the rectangular
dotted line.

Figure 5a shows values of the electric field Ey in the same situation as above,
9
ot
value is 3.0 o At both ends of the area of the disturbance, Ey is reversed and

where is 1.3 11?1_? In the middle, the direction of Ey is dawn-to-dusk, and its

\ . . . .
its values are 1.2 m; These values can be compared with typical cross-tail electric

field values in the literature (e.g. AKASOFU [1]). These are less than 1 mV/m,
usually between 0.2 and 0.5 mV/m. The induction mechanism gives values of
several mV/m over a large area in the plasma sheet, which means that the static
cross-tail electric field is negligible compared to the induction field at the onset
of the substorm.

Figure Sb gives the corresponding values of £,. These electric-field values can
be projected along magnetic field lines. This means that in regions where £ points
earthwards, it accelerates protons in that direction, and in regions where £ points
tailwards, it accelerates electrons towards the earth (Figure 6). The field maxima
are displaced outside the dubble region owing to the expansion of the disturbance
towards the dawn and dusk side. (Tailward and earthward in Figure 5a).
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Figure 6. The parallel component of induced electric field Ey in tail lobes accelerates protons
and electrons on the dawnside and duskside of the perturbation; only the dawnside is shown,
the directions are reversed on the duskside. The magnetic moments of positive and negative
meanders are as shown.

By inserting the disturbance in the tail model given in equations (2.10)...(2.12)
we obtain the structure of the neutral line on the equatorial plane. Figure 7a shows
the magnetic and electric field strengths in the region of the negative current
meander when Z = 0.1 Ry, ¢ = 15 seconds and 3B/d¢ = 0.17 nT/s. The region
with negative B, is surrounded by a neutral line, with X-type geometry near where
X = —30 Ry and the current strength is decreasing, and O-type geometry on the
other three sides where the current is increasing.

Figure 7b shows the components of the induced electric field on the plane of
the neutral sheet (Z = 0.1 Ry), relative to the neutral line in the negative meander.
It is interesting to note that, in some regions inside the neutral line, we can draw
circles along which the electric field components are always directed in the same
tangential direction. This supports our idea that betatron acceleration occurs close
to the neutral-line region. Regions causing linear acceleration can also be found.
Examples of particle patterns and acceleration magnitudes are given in PELLINEN
and HekkiLa [16].

6. Discussion

In this paper we have mainly considered a mathematical model valid during
the first few seconds at the onset of a magnetospheric substorm. We have not
dealt with the process that triggers this type of disturbance: the basic physics of
the plasma processes causing the disturbance remain a problem to be tackled in
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Figure 7a. Magnetic and electric field strengths of the perturbation around the negative current
meander, when ¢ = 15 seconds and 0B/0t = 0.17 nT/s. The region with negative B, is surrounded
by a neutral line, with X-type geometry near the point where X = —30 Ry; and the current
strength is decreasing, and O-type geometry on the other three sides where the current is in-
creasing.

the future. Instead, we have jumped right into the middle of the problem. Even
so, this ad-hoc model reveals significant features, such as topological features in
three dimensions and an explicit time dependence that must be taken into
account in the development of physically more realistic models.

As stated in the Introduction, we believe, we have used all essential observa-
tions as the starting point for deriving our model. We have taken good care to see
that the model does not disagree with present observations of phenomena connected
with the onset of substorms.

The model is three-dimensional and time-dependent. Most earlier models on sub-
storms have been two-dimensional (see e.g. AKASOFU [1] for a review), so they
have not been able to explain the formation of Birkeland currents. The lack of
time dependence in earlier models has been an even greater problem than their
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Figure 7b. Components of the induced electric field on the plane of the neutral sheet, relative
to the neutral line in the negative meander.

two-dimensionality, because that is obviously disagrees with observations. In any
plausible substorm model, account must be taken of aE/ ot, and thus of the
induced electric field, which differs significantly from static fields. At the moment
of onset it is obvious that £ is the most important, so all other electric fields can
be disregarded.

The model is analytical, which means that numerical calculations can be done
quickly and easily on a computer. At this stage, it is not sensible to introduce
more complex current patterns, because the lack of a suitable model for the tail
at the moment of onset makes it premature to consider physically realistic situa-
tions. Largely for this reason the model is not self-consistent. In other words
the mechanism that sustains the disturbance is not explained, and the plasma flow
parameters are not matched with the electromagnetic field values.

From the above it is obvious that a physically more realistic model must be
found, either by means of a satisfactory theory, or empirically, basing on more
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detailed observations. Nevertheless, we believe that our model does include the
essential features. At this stage, owing to the wide variability of the actual events
being studied, the quantitative aspect is not as important as the qualitative.
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