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Abstract

The performance of the Davidon, Marquardt, Powell and
Spiral algorithms of non-linear optimization have been tested
on the profile interpretation problem of magnetic prospecting.
The performance has been measured by the number of function
evaluations needed to calculate the theoretical profile of the
interpretation model. The model parameters are found mosb
reliably by minimizing the sum of squares of the deviations
between the measured and the theoretical profiles.

For models consisting of one or two two-dimensional plates,
with six parameters each, the Powell method has the most
reliable performance, but the Marquardt method often is
faster. In the interpretation of long, complica.ted profiles
a reduction of computing time is essential. It was obtained
by partitioning the measured profile and optimizing the para-
meters of each plate by direct search with parabolic fit to a
limited number of points. The dip and depth extent of the
plates should then preferably be kept constant during opti-
mization.

1. Introduction

The interpretation problem of applied geophysics consists of finding
geologically feasible variations of various physical properties of the
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ground from measurements of local variations (anomalies) of physical
fields caused by the physical property in question. The problem, how-
ever, has no unique solution. Several alternative structures may give
rise to same anomalies within accuracy of measurement.

The degree of non-uniqueness can be decreased by specifying the
approximate form of the structures generating the measured field.
Simple geometrical forms, such as cylinders, spheres, sheets and prisms
are usually chosen, since the theoretical anomalies of such bodies are
often calculable in closed form. The problem of interpretation then
consists of comparing the measured values with the theoretical field
values of one or several of these simple structures and finding the best
values for the structure parameters, the dimensions and the physical
properties of the model bodies.

Before the general use of computers, the interpretation of magnetic
anomalies was based on one or several characteristic points of the
measured anomalies, such as points of maximum and minimum value,
inflection points, half-widths etc. [22]. Soon it became appreciated,
that the whole anomaly was to be used in order to improve the solution.
Standard curves were published to aid the interpretation by curve
comparison [5]..

After the use of computers became more common, the possibilities
of iterative interpretation has been discussed by many authors. Most
Papers consider the interpretation of a single anomaly [1], [2], [10],
[16] or the finding of one parameter (e.g. magnetic susceptibility or
depth) of a more complicated structure [3], [6].

The theoretical field values are mostly non-linear functions of the
structure parameters. Thus the use of optimization methods can be
used in solving the interpretation problem. This article describes per-
formance comparisons between various standard methods of optimi-
zation used in the interpretation of magnetic prospecting measurements.
The speed of performance has been the ultimate goal of these investi-
gations.

2. The two-dimensional magnetic interpretation problem

Magnetic prospecting measurements are performed along straight
lines, profiles, either on the ground or from an aeroplane. The vertical
or the horizontal component of the anomalous magnetic field is usually
measured in ground surveys. In airborne measurements the anomalous
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total field variations — usually assumed to be small compared with
the main geomagnetic field, 7', — are registered.

Since many structures of interest in prospecting are long in one
horizontal direction [12], the interpretation model is built up as a com-
bination of thick plates (Fig. 1). Neglecting effects of anisotropy and
remant magnetization, the magnetic field of a single plate is given by
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The parameter vector of the plate is
y =(d,%:%,h,p,k)
where (cf. Fig. 1)
d = thickness
x, = horizontal position
z, = depth to the top
h = depth extent
g =dip
k = apparent susceptibility
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Fig. 1. The magnetic thick plate, definition of parameters.

The expressions b and ¢ differ for vertical (Z), horizontal (H) and total
(T) fields
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where T, and I, are the amplitude and the inclination of the geo-
magnetic field, & the strike of the plate and N the approximate de-
magnetization factor (having values between 27 and 4z cgs units depend-
ing on the thickness of the plate [5]).

Proper values of the plate parameters are found by minimizing the
objective function, which is a measure of the deviation between the
measurements and the theoretical field. Three different objective func-
tions have been considered in this investigation:
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F:i = zFr (mi', .771)
1=1

and y; is the parameter vector of the I:th plate, N the number of
measuring points and N, the number of plates in the total model.
Certain important properties of these funtions ave briefly discussed
in chapter 4. Correlation coefficients can also been used to measure
the goodness of fit between measured and theoretical fields [17].

The geological feasibility of the final solution causes some restrictions
on the parameter values allowed. These constraints were implemented
by defining an analytic continuation of the objective function

S, Yh =Y = Y
S = . 2 =yl =y (4)
SO'[]_—]—(?/J—I—-])} ! ! . }l=1...N;
Ym Yt S Yp = Yum

where S, is the basic objective function defined by equation (3) and
y;i = greatest allowed value of the j:th parameter

yi = smallest allowed value of the j:th parameter



148 Sven-Erik Hjelt

The chosen values of yF are given in Table 1. It is necessary to make
further restrictions on the horizontal position of the plates, if neigh-
bouring plates are not allowed to cross. This is not, however, necessary,
since the model satisfies the superposition principle.

When the depth extent, h, of the plate is great (infinite), the
functions @; and @, in equation (1) do not longer depend on the dip,
@. The coefficients b and ¢ can be used as help variables since they
are the only factors depending on dip and susceptibility in this case [8].

This process, called dip-linearization, has been used in some of the
examples to be discussed. The number of points associated with a
measured anomaly profile and the starting values of the most para-
meters are found using a special algorithm described by HymLr [8].
(Cf. table 1).

3. Description of the optimization methods

3.1 The Marquardt algorithm

In the Newton method of finding the minimum of an objective
function, S, the theoretical anomaly F, is approximated by the
first term of its Taylor series (¢f. definitions of Eq. (3))

F;,“:Fn(y) +2JIJ 6?/]
J

7 6F,( )
i = < xi,
j ay] y

(5)

An iterative refinement of y is given by

Y — 3 oy
Sy =A1:b

A= {Zl(e]fj ")}
b={> (4i+Jy}

where A and b should be calculated with the latest values, y®, of
the parameters, which are available.

The method is ultimately unstable, and several methods to ensure
reliable convergence have been put forward [19]. The suggestion of
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MArquaDT [15], LevENBERG [14] and MorrIsoN [13] is the addition of
a constant A to the diagonal of the multiplying matrix A. Too great
values of 1 make the decrease of § slow, whence a compromise bet-
ween speed and stability has to be made. In this mmvestigation the
diagonal elements of A were multiplied by 1+ 1,

A=Jp k"

where k is the iteration cycle. The choise 1,=0.1 and % = 3 was
found to be appropriate, although it leads to greater values of A than
those considered to be optimal by Smanwo [20]. If the value of S still
happens to increase during an iteration cycle, 1 was successively
increased by multiplying with 5 until a decrease in S again was found.

3.2 The Davidon method

When the method of Davibox [4], [13] is used to minimize the
objective function, new values of the parameters are searched for in
the conjugate directions

a® — g® . pk) (7)

where b is the negative of the gradient of § and H is an approximation
of the inverse of the matrix formed by the second derivatives of S.

The objective function is minimized as an one-dimensional search
in the direction defined by d. The new parameter values will be

yEHD = p . E . g (8)

where u is a value giving Smw. The matrix H is updated as a function
tion of u®,d®, — b®, —p*t) and H®,

3.3 The Powell algorithm

The optimization method of Powrrrn [18] does not need the calcul-
ation of the derivatives of the objective function. The search goes along
N, conjugate directions d, where N, is the total number of parameters
to be optimized. New values of the parameters are given by

YD — y® | g
- )
5= 1 df
igl
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where the coefficients 4 are the values minimizing

S (¥ + > A dy) i=1,2,...,N, (10)
j=1
and the directions d; are defined as
ap=all,  i=1,2,...,m—1
st =8 o

For k=1, the diis are the directions defined by the components of
the parameter vector y.

When the number of parameters increase, restarting of the algorithm
is recommended as a means to prevent the stagnation of the optimi-
zation process [13]. Tests with one-plate anomalies showed, that
frequent restarting (even after every iteration) was efficient only at
earlier stages of optimization, when the parameter values were still
far from their optimal values. For many-plate anomalies with great
number of parameters, the restarting process was, contrary to ex-
pectations, very ineffective. A closer look at the situation showed,
that actually very few parameters changed during each iteration. The
conjugate directions of the Powell method thus did not come to efficient
use. This fact lead to the conclusion, that a simple direct search for
each parameter in turn might be computationally simpler and faster
to use.

3.4 Direct search with partial anomalies

When the length of the anomaly profile to be interpreted and the
number of plates in the interpretation model increase, the computing
time of the optimization process soon increases beyond the limits of
feasibility. The concept of partial anomalies was then introduced and
connected with the direct search method of parameter iteration. Con-
siderable savings in computing time were noticed, when only a suitable
number of points around the maximum anomaly corresponding to each
plate (= the partial anomaly) is used in interpretation.

The maximum of each anomaly is identified by means of finite
difference approximations to the horizontal derivate of the measured
profile. Each partial anomaly consists of NP, points around the maxima
so, that two neighbouring anomalies have no common points (i.e. if X,
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is the set of points of each partial anomaly, then X; N X = 0 when-
ever k #1). At later stages of iteration, the number of points, NP,
of the partial anomalies are increased, so that combined anomalies
will be better interpreted.

Investigations of the objective function of a single plate indicated,
that § is quadratic over a wide range of parameter values. Each para-
meter is therefore refined using parabolic fit at three points. The partial
theoretical anomaly is thus computed four times for each parameter
value to be improved. The new parameter value chosen corresponds to
the smallest value of 8. The best steps in parameter iteration are
those, which encounter the minimum of the objective function, and
still are so small, that the parabolic natute of § prevails. Too small
steps seemed to be less dangerous in encountering the minimum than
too large a step. Twodimensional cuts of the objective function surface
were used to obtain information about suitable steps [8].

The steps decrease from one iteration cycle to another in proportion
to 1/k, where %k is the iteration cycle under consideration. Thus

The steps of the first iteration 4 y©® are given in Table 1.

There is also strong correlation between some of the parameters of
the model (most notably d — z,, d — b and x, — @), which appeared
in the contour maps as inclined contour ellipses (or in case of strong non-
linearity, distorted ellipses). These parvameters should preferable be
changed together, but no satisfactory general method has hitherto been
found. The Marquardt method might offer a solution, but it was not
tried in connection with partial anomalies.

The suitable number of points associated with each partial anomaly
is a a matter of compromise. A small value of NP; should be pre-
ferred for a minimal computing time. When two or more anomalies
are strongly interrelated so that the peaks of at least one anomaly
disappears, correct positions of the plates can be obtained only by
including points common to both anomalies. A good compromise is
to start with NP, -values satisfying the criteria

Ny
6 < NP, <20 NP <N,
=1
and to increase the number of anomaly points (N.P;) succesively at
later stages of interpretation until a number depending on the anomaly
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maximum amplitude (or % -value of the corresponding plate) is reached.
Figure 2A shows the effects of this type of procedure (curve c¢). The
decrease of the objective function, 8, soon stops, when the partial
anomalies with original number of points only are used (curves b and
d). In cwrve @ NP, = NP, for all plates. The decrease of § is still
quite favourable with respect to computing time, since the number of
plates is small as well as the disturbing influence of neighbouring ano-
malies (¢f. Fig. 7). The effect of improving the model by adding a fourth
plate (curves ¢ and d) is clearly noticed both from the starting value
and the final value of §.

Figure 2 B shows a detailed description of the performance of the
direct search optimization, with partial anomalies [ NP, < N,) and

1

Tig. 2C the same for NP, = N; In both cases the parameters of
each plate were iterated twice without decreasing the parameter step,
before the parameters of the next plate were considered. The figures
show clearly, that the second iteration cycle of each plate brings a
singificant decrease of the objective function in very rare cases (plate
no 1, position z,). '

3.5 The Spiral algorithm

Finally a recent method, the Spiral algorithm [11], was briefly tested
on some interpretation examples. The search for new parameter values
is done along spirals in the plane defined by the Taylor and the steepest
descent directions of 8. The Taylor step is halved whenever no decrease
of the objective function can be noted along a spiral. If a maximum
number of spirals have been searched without finding parameter values
decreasing S, the search is continued in the direction of steepest de-
scent, which is known always to lead to a decrease of . Searches
in the Taylor direction are performed by the Marquardt algorithm.

3.6 Minimum computing times for the methods

Some general information about the optimization programs used
is found in table 2. Some ideas about the computational efficiency of the
algorithms can be obtained by counting the arithmetic operations
included in the function F, (table 8). The results have been used to
construct table 4, giving the minimum computing time and number
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Table 2. Methods and programs used.

Uses
Description Source of computer ,
Method . Function
in Ref. no program used Derivatives
values
Davidon 4,13, 19 Reference 23 Yes Yes
Direct search
with partial 8 Programmed by author Yes No
anomalies
Marquardt (10), 13, 14 | Programmed by author Yes Yes
15, 19
Powell 13, 18 Powell/Outokumpu Comp. Yes No
Dept. (Reference 21)
Spiral 11 Outokumpu Comp.Dept. Yes Yes

Table 3. Number of arithmetic operations in computing F; and, its derivatives.

+ b4 / l trig | arctan| In
Ny times 10 19 1 2 0 0
s Ni- Ny times | 16 9 7 0 1 1
Derivatives
(in addition to ;) N+ Ny times 32 25 12 0 0 0

Table 4. Minimum computing time needed for aniteration cycle (arithmetic opera-
tions of F, and derivative calculations only).

3 *
Ny (v =108 time/sec*) Ntunet ];;::1'1
Marq. | Dirs. | Powell | Dirs. | Powell
1 10 0,06 0,12 1,46 0,70 24,2 12 0,5
2 20 0,22 0,47 3,0 5,33 13,7 24 1,8
3 30 0,49 1,05 4,67 17,7 9,5 36 3,8
5 50 1,35 2,88 8,31 81 6,2 60 9,7
10 100 5,4 11,5 19,3 | 642 3,6 120 | 33,3
20 200 21,3 45,7 49,1 | 5110 2,3 240 | 104

*) FORTRAN IV, IBM 360/40
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of function evaluations (Niume) for one iteration eycle of the optimization
methods. The operations required by the algorithms themselves are not
included. Tt is further assumed, that the profiles contain 10 points per
anomaly and that all six plate parameters are optimized. The computing
times of the Fortran function statements are estimated from the machine
language translation of the statements.

The last column shows the merits of the partial anomaly concept
when the number of plates increases. In practice, the computational
efficiency of the direct search with partial anomalies is still greater for
many reasons. The direct search program is less complicated, non-
anomalous parts of long profiles shorten the optimization of partial
anomalies etc. In all resultis shown later, when the methods are compared,
true computing times have been used.

4. Properties of the objective functions

The nature of the objective functions S, S, and 8, is demonstrated
by two-dimensional contours, when the thickness (d) and dip (¢)
of a plate are changing (Fig. 3 A). The function S; has the smoothest
behaviour when the parameters differ considerably from their correct
values. S,, and still more, S;, has a tendency towards concavity,
which is a highly undesired feature of the objective function in any
optimization method.

The behaviour of the objective functions during optimization was also
tested. The measured profile consisted of a theoretical anomaly and
the Powell algorithm was used in all tests. Figure 3 B shows the decrease
of the function §;, when different objective functions were used during
optimization (labels 1, 2 and 3 for §), S, and S; respectively). Figure
3 C shows the decrease of the objective functions themselves.

The results of Fig. 3 B confirm, that a linear objective function
(S;) does not give a very good overall fit in the interpretation (S; is
related to the mean deviation of fit, S; is the maximum deviation).
The objective function S; was abandoned because of its non-convexity
and its slow convergence.

The objective function S, showed a better convergence as measured
by 8; than §; itself (Fig. 3 B). The convergence of S, turned out to
be oscillatory, when the dip of the plate was optimized (dashed parts,
Fig. 3 C). This objective function is useless for parameters, which
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affect strongly the flanks of an anomaly. The conventional sum of
squares, S;, had the best overall properties for the purpose of opti-
mization of the plate parameters.

5. Comparison of optimization methods

The experiments with the various optimization methods are described
by means of 5 examples, shown in Figures 4—8. The first part of the
Figures show the measured profiles (circles), the interpretation (line)
and the interpretation model obtained. The parameters which are kept
constant during optimization are indicated together with the mean
deviation of fit, 0. The second parts of the Figures show the convergence
of the various optimization methods. The speed of convergence is meas-
ured by the number of function evaluations, one function evaluation
being equal to calculating the whole theoretical profile once. The number
of interpretation points and the effect of the parameters not optimized
are taken into account when estimating the true performance times.

The first profile is a theoretical one-plate anomaly without measure-
ment errors (Fig. 4). Because the plate had infinite depth extent, the

TEST 2 fs ’ h | —’

800y z/% 105

Z oy = 6307
ot
8
k 6
, ) 4
d,x,.z, :Aé\'k 2
SPIRAL

600

400 4

ZH,,ulh =const.

200

o= 7.3¢
X,,Z,:Marquardt
3 03
0 2.k linearization

100 200 - 300
Nrunct

Fig. 4. The interpretation of a theoretical magnetic anomaly (dashed curve: original
plate) and the decrease of the objective function for various methods of optimization
(dotted parts indicate diplinearization).
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Fig. 5. The interpretation of a measured vertical component anomaly (upper
convergence curves: dotted parts indicate dip-linearization).
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parameter % was kept constant and dip-linearization was used (dotted
parts of the convergence curves) in connection with the standard opti-
mization methods. The Marquardt method performed best and the
divect search method was slow in this example. The Spiral method
performed better than the Powell method since pure Taylor searches
were effective during the most of the time. The greater time required
by the method compared with the Marquardt method is due to more
numerous program operations required by the Spiral algorithm.

The second example (Fig. 5) is the measured anomaly of a plate
with infinite depth extent. The methods performed in a manner similar
to the first example. The direct search was not applied. There were no
essential differences between dip-linearization (upper convergence
curves) and optimizing dip and susceptibility together with the other
parameters (convergence curves at bottom).

The third example (Fig. 6) repeats the features of the two first
examples. The Spiral method failed for some reason, not found. The
Davidon method was comparable with the Marquardt method at later
stages of optimization, but it failed when used with dip-linearization.
The efficiency of the direct search method was equal to that of the
Powell method, although not shown in the figure.

The fowrth example (Fig. 7) shows a multiplate anomaly, where the
comparison between the methods is done for a three plate interpretation.
The Davidon method performed in this example equally to the Powell
method when used together with dip-linearization, whereas the Davidon
method failed when dip and susceptibility were optimized by the prog-
ram itself. The efficiency of the direct search algorithm is evident.
When a fourth plate (the plate most to the right) was added, the starting
value of 8 decreased significantly and the convergence of the direct
search was still improved. The Marquardt method failed altogether
on this interpretation example.

The last exmaple (Fig. 8) demonstrates merely some of the un-
ambiguity properties of the interpretation. It is an aeromagnetic anomaly
with an associated gradient caused by neighbouring anomalies. The
gradient also compensates for the lack of exact two-dimensionality
of the problem. When the method of dip-linearization was used in
connection with the gradient term, the solution oscillated and the opti-
mization did not converge after the first iteration cycle. When dip,
susceptibility and the gradient were treated by the Powell algorithm,
the convergence was normal and the fit given in the upper part of Fig. 8
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Fig. 6. Convergence in the interpretation of ameasured vertical component

anomaly.

was obtained. The Davidon method performed poorly even with constant
gradient term and failed altogether when a variable gradient term was
used. The Marquardt method and direct search were applied on a model
consisting of three plates and their performance can not be directly
compared with the other methods (the third plate was substituted for
the gradient term). The decrease rate of the Marquardt method seems
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Fig. 7. Convergence in the interpretation of a measured multiplate vertical
component anomaly.

to be comparable to that of the Powell method, whereas the direct
search method did not converge after the first iteration cycle due to
inappropriate number of points used for the partial anomalies.

According to these examples and other similar experiments [7], [8]
the following conclusions can be made:
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1. The Powell method is capable of reliable performance for the
greatest number of different parameter combinations. The method
becomes slow when more than 3 plates are encountered. Dip-lineari-
zation is not to be used with this method, since the conjugate direction
properties of the Powell algorithm are lost at the restart after each
dip-linearization.

2. The direct search method in combination with partial anomalies
is effective when two or more plates are used. The parabolic fit used
for adjusting each parameter is effective, since the objective function
for one plate is quadratic over a reasonably great region of parameter
values.

3. The Marquardt method performs well for one and occasionally
two-plate anomalies, but it fails when the number of plates is increased.
Dip-linearization was succesful and lead to improved computing times
in connection with the Marquardt algorithm.

4. The Davidon method performs well only occasionally. The starting
values of the parameters are obviously quite far from their optimum
values and the method then fails. AL-CrATABI [1] has found in connec-
tion with magnetic interpretation with polygonal cylinders, that the
Davidon method is effective only at a final adjustment of the parameter
values.

5. The Spiral algorithm had the poovest performance, obviously
because of the success of the Marquardt principle in the searches along the
Taylor direction.

6. A combination of partial anomalies and the Marquardt method
might give further advantages and twn out to be the most effective
combination in the interpretation of magnetic thick plate anomalies
by optimization.

7. The sum of squares of the deviations between measured and
theoretical anomalies, is the best objective function for the optimi-
zation process. Maximum deviation lead to slow convergence and weigth-
ing the deviations squared with the absolute value of the anomaly lead
to oscillatory behaviour of the objective function during optimization.

8. Tor very complicated anomalies (succesful interpretation has been
obtained for models with up to 20 plates), dip and depth extent should
be kept constant during optimization. The partial anomalies are not
efficient for their interpretation, since the smallest errors of dip and
depth extent is not obtained, when points around the anomaly maxima
are used [9].
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