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Abstract 

In the paper we suggest an asymptotic approach for the description of multiple brittle fracture of 
the ice cover of fresh water basins at an abrupt changing of the ice surface temperature (at a thermal 
shock) or at occuring the temperature difference between the central and peripheral regions of the ice 
cover (in plane). A method for solving the problems of thermal fracture under both types of loading was 
suggested. The method implies solving the heat transfer problem for the whole ice cover region, while the 
crack initiation and growth is considered within the separate effective blocks-beams formed by parallel 
growing cracks. An energetic method is used for modeling the crack growth conditions. The estimates of 
the heat flux and bearing capacity variations caused by the crack influence were obtained. An influence 
of the contact boundary conditions at the shore line on the fracture process features was also analyzed. 
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1. Introduction 

Low temperatures in winter create thermal stresses in the ice cover of fresh water 
basins. Ice has a rather high coefficient of thermal expansion (α ~ (50-80)10-6 oC-1) in 
the temperature range 0oC - -30oC (Bogorodski and Gavrilo 1980). Hence, the thermal 
stresses can cause ice cover fracture by formation of cracks-faults nucleated at the 
cooling surface. 

Cracks of thermal origin in ice cover have been known for a long time. Thermal 
cracks belong to the factors forming the mechanical structure of sea ice cover and its 
stress state (Evans 1971, Bazant 1992). The role of thermal stresses for ice cover state 
in fresh-water basins is more important as compared to sea ice cover, since some 
characteristic types of loads in sea ice cover such as loads caused by the ice drift (or by 
the wind) are absent (or less intensive) in fresh-water basins. 

Structures of thermal cracks in ice cover include crack systems formed at different 
line scales and scales of temporal parameters of actions. Often these scales essentially 
differ such that the processes occurring at each of the scales are weakly interacting. This 
feature enables to distinguish their scenarios. In the paper we consider some basic 
scenarios of the formation of the thermal crack systems at the scales of ice thickness and  
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ice basin. The attention is also paid to the role of the structure of the crack system in the 
processes of heat transfer through the ice cover. 

In the paper first we consider a 2D-model problem on a limit equilibrium of a 
crack under ice cover bending in a vertical plane under different boundary conditions 
(the model problem demonstrates a variant of ice cover fracture by single cracks). Then 
a problem on local multiple fracture of ice cover by surface cracks is considered and the 
appropriate exchange processes are analyzed. Finally a problem of multiple fracture of 
ice cover at the scale of the ice basin is considered accounting for the temperature 
difference between the central and circumferential parts of the basin. 

2. Statement of the problem 

Let us consider a model of a plane section of the ice cover. Assume that the ice 
cover is rather thin such that the temperature distribution through its thickness is linear 
and stationary. The temperature at the bottom of the ice is at the freezing point, while at 
the upper surface it is close to the air temperature. We separate two main situations of 
thermomechanical quasistatic damage of the ice cover in the bounded fresh water 
reservoirs: 1. Ice cover is fully joined with the shore line; 2. Ice cover is free floating. 
Note, that the processes of the leveling of the temperature gradient through thickness of 
the thin ice cover (of thickness 0.5-0.7 m) in the winter period are ahead of the stress 
relaxation processes. Hence, we can assume that the temperature and stress distributions 
are close to linear for such quasisteady regimes. Quasistatic thermal stresses in the ice 
cover plane are calculated in a quasielastic approximation such that the relaxation 
processes are accounted for by a coefficient k < 1 (Pehovich 1983) 

)1/()( µ−∆ε−≈σ TkEy  (1) 

where E, µ are the Young’s modulus and Poisson ratio of ice (E ~ 5·109 Pa, µ ~ 0.3), 
ε(∆T) is the deformation caused by the temperature variation (∆T), k is the coefficient 
taking account of the stress relaxation. Thermal deformation depends on the 
aforementioned boundary conditions on shore. For instance, if the dispacements are 
absent at the boundaries and, hence, thermoelastic stresses compensate the thermal 
deformations, we can write 

TT ∆α∆ε ~)(  (2) 

Assume the linear temperature distribution through the ice cover thickness 

[ ])(1)( x/hTxTT u −−=≈∆  (3) 

where x is the vertical coordinate referenced from the upper ice cover surface, Tu is the 
temperature of the upper ice surface, and h is the ice cover thickness. Then we obtain 

[ ] )1/()(1 µ−−α−≈σ x/hTkE uy  (4) 
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In case of free boundaries and uniform temperature fields we obtain 

⎥⎦
⎤

⎢⎣
⎡ ∆−∆α∆ε TxTT )(~)(  (5) 

where uTT 2/1~∆  is the average (through the ice thickness) deviation of the 
temperature from its equilibrium value. By incorporating Eq. (5) we obtain 

[ ] )1(/)/(2/1 µ−−α≈σ hxTkE uy  (6) 

Note that in case of the free floating ice cover maximal tensile stresses at cooling 
the upper surface of the ice cover down to the temperature Tu is two times lower as 
compared to the case of the ice cover joined to the shore line. Moreover, the stress 
changes the sign along the ice thickness such that the compressive stresses act at the 
bottom side of the ice cover. Hence, the character of quasistatic thermal fracture of the 
ice cover can be varied by varying the boundary conditions at the reservoir contour. 

To evaluate the conditions of the limit equilibrium of a crack growing from the 
upper surface of the ice cover we consider the strip with an edge transverse crack under 
the action of the stresses σy linearly varying through the strip thickness (Hellan 1984). 
In the first case the crack grows under the action of tension and bending, while in the 
second case the bending stresses are only acting. By superposition of the solutions we 
obtain for the fixed and free boundaries the formulae for the stress intensity factor at the 
crack tip, respectively 
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where  is the crack length (along the ice cover thickness), h is the ice thickness, and f1, 
f2 are the functions which approximate the numerical results given by Rice (1975). 

We use the condition of the crack limit equilibrium in the form which is usual for 
the linear elastic fracture mechanics (LEFM) 

IcI KK =  (8) 

Some estimates of the critical length of the thermal crack in the ice cover are given in 
Fig. 1. The dotted zone shows transition from usual strength criterion to the criterion of 
LEFM (the inherent flaw is related to the transition). In both cases the initiated edge 
crack grows through the whole ice thickness. This circumstance is important for the 
fracture mechanics of the ice cover. It means that the water can fill the thermal 
quasistationary through cracks in the ice cover. The water freezing preserves the 



 R.V. Goldstein and N.M. Osipenko 6

thermal deformations in the whole ice cover. Hence, large compressive stresses occur in 
the ice cover plane at the subsequent variation of the temperature regime and ice 
expansion. These stresses can cause ice cover ridging or damage of structures being in 
the ice cover. 

 

Fig. 1. Thermal cracks in the ice cover; )/( 0h  - the relative value of the inherent flaw. 

In this connection, note that the crack trajectory is influenced by the reservoir 
shape. In particular, the effect of fixing the ice cover boundaries is attained in the 
elongated reservoirs because of the resistance to the ice mass displacement along the 
reservoir axis. As a consequence thermal cracks in elongated reservoirs are oriented 
transverse to this axis. This effect is, in particular, observed in the Siberian rivers. 

3. The thermal shock loading of the ice cover 

Consider another asymptotics of thermal fracture of the ice cover related to the 
fast changing of the ice surface temperature caused by a thermal shock. Such situation 
can occur at the fast cooling of the surface ice at removing the snow cover or at the 
sharp variation of the air temperature over the reservoir. 

We use the approach suggested by Goldstein and Osipenko (1997, 1998). 
As a model problem we consider the problem on propagation of a tensile (mode I) 

crack from the boundary of a half-plane at the thermal shock. 
Assume that the thermal shock causes initiation of a series of subparallel cracks 

(Fig. 2). The cracks follow the stress front advance deep in the body, however, the 
amount of growing cracks decreases with diminishing the stress level such that the final 
crack ensemble consists of the cracks of different lengths. Local thermal parameters and 
bearing capacity of the ice cover depend upon the characteristic relations between the 
crack sizes and distances between them in the ensemble. Let us estimate these 
characteristic relations. 
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We separate an elementary cell with a single crack of a subparallel cracks system. 
The side boundaries of the cell are located between the adjacent cracks (Fig. 2). By 
incorporating the compatibility conditions for deformations we can draw the neutral line 
where the transverse displacements are absent. Hence, to search for the conditions of 
the crack limit equilibrium we can use the scheme of a crack in a strip such that the 
loads act at the crack surfaces while the strip boundaries are fixed. 

 

Fig. 2. Scheme of multiple fracture at thermal shock. 

According to the compliance method (Hellan 1984) we can write for the 
symmetric loading 

( ) 0;)1(/ 122 ==µ−== −
IIIIII KKEKGddU  (9) 

where U is the elastic energy released at the crack motion, KI, KII, KIII are the stress 
intensity factors at tension, transverse and longitudinal shear, respectively. 

Modeling the separated strip by a beam we obtain for the elastic energy 

dx
E

Htx
U y

∫
µ−σ
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 (10) 

where σy(x, t) are the transverse stresses at the crack line, 2H is the width of the strip 
between two adjacent cracks,  is the crack length. 

Differentiating Eq. (10) with respect to  and incorporating Eq. (9) we obtain 

HtK yI ),(σ=  (11) 

The thermal stresses along the beam axis are equal to 

)1/()/(2/1 µ+α≈σ dxdTEHy  (12) 

where T = T(x, t) is the temperature distribution along the beam length. 
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Consider (for instance) the variant of the thermal shock caused by a temperature 
jump, ∆T, at the ice cover upper surface (the coefficient of heat transfer β→∞). In this 
case (Kovalenko 1970) the function T(x, t) equals 

( )atxTT 2/erfc∆=  (13) 

where a is the coefficient of thermal conductivity. 
We obtain from Eqs (12), (13) 

atatxTEHtxy πµ−∆α−=σ )1/()4/exp(2/1),( 2  (14) 

πµ−∆α== − )1/(2/1);4/exp()( 22/12/3 TEAatatAHK I  (15) 

Assume that KI time variation equals its maximal value, i.e. it is related to the 
maximal energy dissipation. Then 

at 2/2=  (16) 

and the value KImax equals for this regime 

eAHK I /22/3
max ≈  (17) 

where e is the base of natural logarithm. 
Using the condition of the crack limit equilibrium (Eq. (9)) KImax = KIc we obtain 

the crack size as a function of a distance between them within the crack system under 
consideration 

( ) eKAH Ic /2/2/3≈  (18) 

We can use Eq. (18) to obtain other system parameters, e.g., relative crack 
density. For this aim we assume that the maximal possible crack length correlates with 
the ice cover thickness h~max . Then the distance between the cracks of maximal 
length equals 

( ) ( ) 3/13/2
max 2// eAhKH Ic≈  (19) 

and the estimate of the general crack density has the form 
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The relative crack density (the ratio of amount of cracks of length exceeding a 
certain value to amount of all cracks) can be represented as follows 
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Note that the thermal parameters of the material are absent in the obtained relations. 
Moreover, the relation for the relative crack density has an universal character and is 
determined by the temperature distribution function. One should bear in mind that the 
given relations provide an upper estimate of the crack density, since using Eq. (19) to 
characterize the whole ensemble we assumed that the effective element (beam) of larger 
thickness consists of the smaller size elements. We did not take into account that a part 
of the elastic energy in the vicinity of larger cracks is spent on creation of small cracks. 

Let us estimate the role of thermal cracks in other processes. Being small the main 
part of cracks formed at a thermal shock are not filled by water and continue to be open 
during the relaxation process. Hence, the crack surfaces can play the role of an active 
boundary of heat exchange between atmosphere and ice cover. This effect, in particular, 
has an influence on the rate of ice accumulation. We represent the integral specific heat 
flux at the boundary atmosphere-ice cover, q, as follows 

[ ])/(1 00 SSmqq ∆+≈  (22) 

where q0 is the heat flux from the ice cover surface free of cracks, S0 is the initial area of 
heat exchange, ∆S is the total surface of thermal cracks, and m ≤ 1 is a coefficient taking 
into account the heat exchange character in thin cracks. 

We can estimate the value ∆S for the plane model as follows 

( ))()(0 maxmin
2~)/( >> −∆ nnSS  (23) 

Taking account of Eqs (19), (21) lead to the following estimate 
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Assume that maxmin << , then we can evaluate the increment of the heat flux 
caused by an influence of thermal cracks 

( ) ( ) 3/23/1
0 //23/2 IcKAehmqqq ≈− 0  (25) 

To estimate the rate of ice accumulation we use formula given in (Pehovich 1983) 

( ) 1)/( −−== Lqqdtdhv w/i  (26) 

where v is the rate of ice thickness increasing, q is the heat flux from the ice cover to 
atmosphere, qw/i is the heat flux from water to the lower surface of the ice cover, and Lv 
is the phase transition heat (melting heat). 

Some estimates of the influence of thermal cracks in the ice cover on the relative 
rate of ice accumulation (such that water temperature is close to the freezing 
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temperature; qw/i → 0) are given in Fig. 3 as we do not take account of the influence of 
the snow cover 

( ) [ ] 26.0~,)1(/)(/ 3/23/1 kKTEkmhvv Ic µ+∆α≈∆  (27) 

Occurrence of open cracks (leads) increases the effective area of heat transfer 
with atmosphere and, hence, increases the rate of freezing. Increasing the air 
temperature to the melting period leads to occurrence of compressive stresses in the 
surface layers of ice. The crack closure diminishes the heat transfer. 

 

Fig. 3. Interrelation of the increasing of the relative velocity of ice thickness growth and the temperature 
jump, ∆T, for the ice cover with a system of thermal cracks (KIc = 0.1 MPa.m1/2; m ~ 1; E = 5·103MPa;  
α = 6·10-5 1/grad; µ ~ 0.3; qw/i → 0) 

4. Cracking in the whole lake  

Consider the growth of thermal cracks in the ice cover of an isometric reservoir 
within the assumption that the ice cover contour is not joined to the shore line. The 
steady thermal stresses caused by the uniform cooling of the homogeneous ice cover 
create uniform tensile stresses in a surface part of the ice cover. The crack density and 
trajectory can be related to small variations of stresses. The circulation in conjunction 
with the heat transfer in the stratified thickness of water leads to occurring of a 
temperature difference between the central and peripheral zones of the lake at the ice 
cover surface part. In turn, the temperature difference causes additional tensile hoop 
stresses in the peripheral zone of the ice cover on the lake. We evaluate an influence of 
these additional stresses on the thermal cracking of the ice cover. 

For the sake of simplicity we write the quasisteady distribution of temperature 
along the disk shaped ice cover in the following parabolic form 

( )nRrTTrT /)( 0 ∆−=  (28) 



Fracture of Ice Cover under Thermal Stresses 11

where Т0 is the temperature in the central part of the disk, R is its radius and ∆Т is the 
temperature difference between the central and peripheral zones of the ice cover. 

A system of radial cracks is initiated at the ice cover surface at multiple cracking. 
These cracks subdivide the ice cover on a system of wedge shaped beams. The hoop 
stresses in such beams equal (similarly to Eq. (13)) to 
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where Н0 is the beam width at the disk periphery, σ0(х) are the steady uniform thermal 
stresses. Conditions of the limit equilibrium of a crack in a thin wedge shaped beam 
have the following form (similarly to Eq. (12)): 

)/(; 0 RrHHHK Ic =σ≈  (30) 

If the steady stresses are small we obtain from Eqs (30) and (31) the relation 
between the parameter Н0 and the length of the equilibrium radial crack  (Fig. 4): 

( )( ) 3/25.0
0 )/(1/)1(2 +−∆µ+≈ n

Ic RTnERKH  (31) 

That is the cooling of the circular lake periphery leads to formation of cracks of length 
comparable with the basin radius (Fig. 4). These cracks separate the basin area on small 
amount of weakly joined large fragments. This feature can be used at the estimate of ice 
cover evolution under the action of other sources of loading (wind loading, winter 
navigation, etc.). 

 

Fig. 4. Interrelation between the crack mouths at the outer contour of an ice cover disk, H0, and the 
relative length of the radial cracks, R/ , for the disk-shaped ice cover of radius R (KIc = 0.1 MPa.m1/2;  
n = 2; E = 5·103MPa; α = 6·10-5 1/grad; µ ~ 0.3). 
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Similarly to Eq. (22) we can find the interrelation between the relative crack 
density and their length. In particular, the relative amount of cracks of length larger than 
a fixed value can be evaluated as follows 
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Similar estimates for conditions of the inversion of the temperature field in spring show 
that multiple fracture of the ice cover by radial cracks nucleating in the central zone of 
the lake (reservoir) is possible. 

Remind, that the variations of the steady temperature fields are small and, hence, 
the distances between the cracks are larger as compared with the case of the thermal 
shock. Further, the small value of thermal stresses do not provide conditions for 
nucleation of cracks on the basis of the local ice strength criterion. Crack initiation can 
be provided by existence of local defects in the ice cover. Hence, the possible range of 
crack lengths in the system of multiple cracking becomes narrower. Note, that one can 
classify the state of ice cover in the basins relative to its propensity to one of two 
following fracture types: 1) fracture initiation within the surface layer of the ice cover 
after attaining the thermal stress level determined by the ice tensile strength σf; or 2) 
thermal shock initiation of growth of pre-existed cracks (faults). Different approaches to 
such classification can be suggested (see, e.g., Liu and Fleck, 1998). 

We will compare the limit states using the estimate of the relative critical 
temperature jump. Let us introduce the dimensionless parameter N, which characterizes 
the tendency to these fracture types, as a ratio of the temperature jump needed for 
attaining the limit stress, σf, at the ice cover surface to the jump which causes initiation 
of growth of cracks of depth  with their spacing 2H. By incorporating Eqs. (1) and 
(18) we obtain 

( ) ( ) 25.0~2/1,/2/3 emKHmN Icf π=σ= ∗∗  (33) 

The first type of fracture dominates if N < 1 while the second at N > 1. 
Note, that Eq. (33) is fulfilled within the framework of the aforementioned 

assumptions about the thermal shock at the surface of the ice cover. The ice cover of 
different basins can be characterized by the presence of surface cracks or cracklike 
defects or their systems. The ice properties and loading conditions adjust the specific 
scenario of the fracture process at the same existing surface crack (defect) system. For 
instance, the critical value of the parameter N ≈ 1 is attained in the case described by 
Eq. (33) for 05.0~  at typical values of the fracture toughness 2/11.0~ mMPaK Ic ⋅  
and tensile strength σf ~ 1 MPa (Bogorodski and Gavrilo 1980, Liu and Fleck 1998). 
Hence, new cracks will be formed in the ice cover if the length of the existing defect 
(crack) is less than 2H = 0.14m. 
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5. Conclusion 

The presented results show that a series of thermomechanical processes exists 
which can lead to fracture of ice cover in bounded basin. These processes can be 
subdivided on global (at the scale of the basin) and local (at the scale of ice thickness). 
The global processes adjust the geometry of violations of ice cover in whole and 
creation in ice cover horizontal loads acting, in particular, on different structures frozen 
in ice cover as well as on dams. The local processes lead to formation of a system of 
multiple cracks and influence on local heat exchange and strength of ice under the 
action of local loads, in particular, related to contact loading. The observed structures of 
thermal cracks in ice cover can serve as an indicator of thermomechanical processes in 
ice basin. 
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Appendix: Bearing capacity of ice cover 

Open thermal cracks essentially weaken the bearing capacity of ice cover. In 
particular, an interrelation occurs between the critical specific load and area where this 
load is distributed. 

As an example we consider the conditions of ice cover breach under the action of 
the uniform load of intensity P distributed on an isometric area element (Fig. A.1). 
Assume that breach is caused by the shear loads acting along the area boundary and that 
the characteristic size of the area correlates with the distance between the thermal 
cracks of certain length. These cracks form the loaded area element. 

 

Fig. A1. Scheme of loading of an ice cover plate with a system of parallel crack at contact fracture. 

It is clear from the preceding analysis that the maximal size of the area is related 
to a distance between the cracks of length commensurable with the ice thickness. Then 
the bearing capacity of the ice cover is created by its buoyancy. 

On the other hand, the breach mechanism for small area elements and crack depth 
small as compared with the ice thickness is rather related to the bending of the ice cover 
on the hydraulic foundation than to the ice shear. Hence, our estimates correspond to the 
area elements and cracks of an intermediate size. 

We represent the critical breach conditions as follows 

hFghL
L
LhFP ≤ρ−ρ+σ⋅⎟
⎠
⎞

⎜
⎝
⎛ −≈⋅ ∗ ,)( 21

1  (A.1) 

where F is the loaded ice cover area, L is its contour length, L1 is the length of the 
contour part with a crack, σ* is the shear strength, ρ1 and ρ2 are the densities of water 
and ice, respectively. 

We obtain from Eq. (A.1) for an isometric area element (F ~ (2H)2; L ~ 8H) 
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where H is the half-width of the loaded area (the half-spacing between the cracks). 
Using Eq. (18) we obtain the following interrelation between the area size and its 
specific bearing capacity in case of thermal cracks presence, 
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Note, that the value of the critical load P readily decreases with increasing the area size 
(Fig. A.2). 

 

Fig. A2. Example of an estimate of ice cover bearing capacity at a variation of the loaded zone size. 

The parameter (L1/L) characterizes a part of the contour length of the loaded area 
containing the thermal cracks. The remaining part of the contour is assumed to be free 
of damage and its fracture at breach is evaluated using the average cleavage stresses in 
the section of the ice plate. For instance, (L1/L) ~ 0.5 if the thermal cracks form a 
system of parallel cracks (due to deformation constraint at the lake periphery), since the 
cracks can outline the loaded area along two opposite sides, while two other sides (Fig. 
A.1) remain conditionally unloaded. In this case the bearing capacity of ice on the area 
of width 2H is influenced by thermal cracks during the period preceding the moment 
when the cracks become the through ones. Then the residual bearing capacity is only 
supported on the area sides being free of thermal cracks. 

 


