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Abstract 

We studied the estimation of lake water quality from measured subsurface reflectances in order to 
find out the potential of the channel configurations of three satellite instruments (MERIS, MODIS and 
ETM+). The semi-analytical method was based on the inversion of a bio-optical reflectance model and 
the empirical method on using channel ratios or single channels. The dataset, consisting of data from 11 
lakes located in Finland, has a wide range of water quality: the sum of chlorophyll a and phaeophytin a 
(CChl-a) ranging from 0.8 to72 µg l-1, total suspended solids (CTSS) from 0.4 to 24 mg l-1 and the absorp-
tion coefficient of CDOM at 400 nm (acdom(400)) from 0.4 to 14 m-1. The results from the inversion 
method indicate that MODIS and MERIS have nearly optimum channel configurations for the estimation 
of CTSS and acdom(400) in the lakes we studied. The analyses of the empirical algorithms suggest that 
MERIS has optimum channels for water quality estimations. The estimation accuracy of CTSS and CChl-a 
by the MERIS and MODIS configurations was about the same for the two estimation methods, but in 
case of acdom(400) the empirical algorithms were clearly better than the inversion method. acdom(400) was 
estimated using ETM+ channels with about the same accuracy as by MERIS and MODIS channels. 
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1. Introduction 

Interpretation of water quality from remote sensing data is often based on empiri-
cal algorithms where water quality variables are estimated from the reflectance at one 
wavelength or from ratios between reflectances measured at two wavelengths. Empiri-
cal estimation methods can be divided into purely empirical and semi-empirical algo-
rithms. Semi-empirical algorithms rest on the knowledge on how the optical properties 
of optically active variables affect the reflectance at the applied wavelengths. Chloro-
phyll a,  for  example,  can be estimated with the blue/green reflectance ratio in the case  
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of oceans (O'Reilly et al., 1998) and with NIR/red ratio (Gitelson et al., 2002; 
NIR=near-infrared) in lakes. Both algorithms utilize the absorption maximums of 
phytoplankton located at about 440 and 675 nm. 

Empirical methods have particularly proved applicable to clear ocean waters, but 
in lakes and coastal waters the estimation of one water quality variable is often dis-
turbed by other optically active substances (OAS). One way to solve this problem in 
these ‘case 2’ waters is to use interpretation methods that are based on bio-optical mod-
eling. Such models calculate the reflectance from the specific inherent optical proper-
ties (SIOPs) and from the concentrations of optically active substances. Estimation of 
water quality using bio-optical reflectance modelling is usually based on the inversion 
of the applied model. The inversion method has been used in coastal and ocean appli-
cations (see e.g. Doerffer & Fischer, 1993; Garver & Siegel, 1997; Schiller and Do-
erffer, 1999; Maritorena et al., 2000; Lee and Carder, 2004) as well as in lake applica-
tions (e.g. Bukata et al., 1981, Gege, 1998; Kutser et al., 2001; Pierson and Strömbeck, 
2001). The problem of increased computing time due to pixel-by-pixel inversion of hy-
perspectral satellite images has been solved by the use of neural networks (e.g. Schiller 
and Doerffer, 1999) and by matrix inversion (Hoge and Lyon, 1996; Hoogenboom et 
al., 1998b). Gons (1999) used a combination of bio-optical modeling and a channel ra-
tio in the estimation of chlorophyll-a in eutrophic lakes. The advantages of using bio-
optical modeling in the interpretation are 1) all channels of the remote sensing instru-
ment are utilized and 2) regional, seasonal and water type differences in the SIOPs can 
be considered in the interpretation. 

The aim of this paper was to investigate the suitability of the channel configura-
tions of three satellite instruments for the estimation of OAS concentrations of lakes 
using the inversion method and empirical algorithms. The studied OAS consisted of 
chlorophyll a, total suspended solids and coloured dissolved organic matter (CDOM). 
The analyses were based on the measured subsurface reflectance spectra from which 
reflectances were constructed for each satellite instrument channel. The channel con-
figurations included in the study consisted of two ocean color instruments (ENVISAT 
MERIS, TERRA/AQUA MODIS) together with LANDSAT ETM+. MODIS and 
MERIS are multispectral instruments having similar channel configuration in the 
VIS(visible)-NIR range of the spectrum with the exception that MERIS has channels at 
620 and 705 nm, which are not found in MODIS. ETM+ has three wide channels in 
VIS. Although ETM+ was designed for land applications it has also been used in water 
quality studies of lakes (e.g. Kloiber et al., 2002, Vincenta et al., 2004) and coastal 
waters (e.g. Lavery et al., 1993) due to its good spatial resolution (30 m). Many of the 
published water quality algorithm studies of lakes have focused on one estimation 
method or on one lake type only. For our study we selected 11 lakes, displaying a range 
of varying lake type (oligotrophic – eutrophic, humic). The semi-analytical bio-optical 
reflectance model needed in inversion was first parametrized using SIOP's measured in 
the field and laboratory. 
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2. Material and methods 

2.1 Description of lakes 

Optical and limnological measurements were carried out in 1997 and 1998 at 14 
stations representing 11 lakes located in southern and northern Finland (Table 1). Five 
of the stations were surveyed both in May and in July-August. Each lake had one meas-
urement station with the exception of Lake Norvajärvi and Lake Pääjärvi, each of 
which had two stations, and of Lake Lohjanjärvi, where there were three stations in 
May and four stations in August. The reflectance spectra of 12 stations were used in 
model testing and in the estimation of OAS. The remaining reflectance spectra were not 
accepted for further analyses due to noise caused by waves or large variations in in-
coming solar radiation. However, the SIOPs of all stations were utilized in the pa-
rametrization of the reflectance model. The OAS concentrations and optical properties 
of the stations are presented in Table 2. 

Table 1. Main characteristics of the lakes studied. Number of stations and measurement months are also 
given. Each lake was sampled at one station with the exception of Lohjanjärvi (4 stations), Pääjärvi (2 
stations) and Norvajärvi (2 stations). Oligo = oligotrophic, Meso = mesotrophic, Eu = eutrophic, S. 
Finland = southern Finland, N. Finland = northern Finland. 

Lake Short 
name Region Coordinates Area 

km2 
zmax 
m 

Lake 
type Month 

Enäjärvi, Vihti Ena S. Finland 60°20'N 24°23'E 5 3.4 Eu Aug. 
Lohjanjärvi Loh S. Finland 60°15'N 23°55'N 94 12.6 Meso-Eu May, Aug. 
Vesijärvi, Lahti Ves S. Finland 61o02'N 25o37'E 111 41 Meso Aug. 
Puujärvi Puu S. Finland 60°15'N 23°45'E 7 21 Oligo May, Aug. 
Pääjärvi Pää S. Finland 61°5'N 25°10'E 13.1 85 Humic Aug. 
Keravanjärvi Ker S. Finland 60°37'N 25°5'E 1 2.2 Humic May 
Vasikkajärvi Vas N. Finland 67° 7'N 26° 5'E 0.3 17 Oligo July 
Norvajärvi Nor N. Finland 66°37'N 25°47'E 11 15 Oligo July 
Pöyliöjärvi Pöy N. Finland 66°27'N 25°48'E 1.3 8 Humic July 
Sonkajärvi Son N. Finland 66°37'N 25°14'E 3.2 11 Humic July 
Sierijärvi Sie N. Finland 66°28'N 25°57'E 4 2.5 Eu July 

The lakes were classified (Table 1) according to OECD (1982) based on the 
maximum chlorophyll a concentration (values measured in July-August in this study): 

• oligotrophic (CChl-a(max) ≤  8 µg l-1) 

• mesotrophic (8 µg l-1 <  CChl-a(max) ≤  25 µg l-1) 

• eutrophic (CChl-a(max) >  25 µg l-1) 

Humic lakes, characterized by the high concentration of CDOM and the relatively 
low concentration of total suspended solids and chlorophyll a, were separated from the 
rest of the lakes (acdom(400)>4.0 m-1 and CChl-a(max)< 8 µg l-1). 
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Table 2. The concentrations of OAS, Secchi depth, Kd(PAR), atot(412) and btot(555) of the stations. 
atot(412) and btot(555) were measured with ac-9 and are presented without pure water. 

Station Month 
CTSS 

mg l-1 
CChl-a 

µg l-1 
acdom(400)

m-1 
Secchi 

m 
Kd(PAR)

m-1 
atot(412) 

m-1 
btot(555)

m-1 
Puu-m* May 1.9 4.5 2.1 3.9 1.1 2.0 1.2 
Loh1-a* Aug. 15.5 55 5.3 0.8 3.8 6.2 6.6 
Loh2-a* Aug. 4.6 13.5 3.8 1.5 1.9 3.6 2.6 
Loh3-a* Aug. 5.9 10.5 3.9 1.9 2.0 3.5 2.5 
Loh4-a* Aug. 3.0 11.5 3.3 2.9 1. 3.1 1.9 
Ena-a* Aug. 10 37 1.9 1.1 2.8 3.7 7.9 
Nor1-a* Aug. 0.8 3.5 3.1 4.0 1.5 2.9 1.0 
Nor2-a* Aug. 1.1 3.3 3.6 3.3 1.5 2.9 0.9 
Sie-a* Aug. 19.6 73 18.2 0.4 7.8 - - 
Sin-a* Aug. 1.7 5.7 13.0 2.2 3.9 10.6 1.7 
Poy-a* Aug. 1.0 7.6 10.0 2.5 3.0 8.4 1.2 
Vas-a* Aug. 0.4 0.8 0.3 11.8 0.6 0.4 0.3 
Loh1-m May 17 9.7 9.2 0.8 - 7.5 8.1 
Loh2-m May 10 7.2 5.4 1.1 - 5.2 4.5 
Loh3-m May 7.8 4.2 4.8 1.2 - 4.5 3.6 
Ker-m May 4.4 8.8 14.3 1.4 - 12.5 2.8 
Puu-a Aug. 1.7 1.3 1.3 7.0 0.8 1.2 0.9 
Ves-a Aug. 2 11.5 1.4 2.8 - 1.7 2.1 
Paa1-a Aug. 2.1 5.5 7.4 2.7 - 6.1 1.4 
Paa2-a Aug. 1.6 6.8 7.2 2.7 2.7 6.2 1.4 

* Stations used for testing the bio-optical reflectance model and the water quality algorithms. All stations were 
utilized in model parametrization. 

2.2 Limnological and optical measurements 

Water samples were taken from depths of 0–0.4 and 0.8–1.2 m. In the subsequent 
analyses the average concentrations of these two depths were used. Water quality de-
terminations of the samples were made in the water laboratories of the Regional Envi-
ronment Centres of Uusimaa and of Lapland. Concentration of total suspended solids 
(CTSS) was measured using gravimetric determination of the matter removed by a filter 
(EN 872, Nuclepore polycarbonate 0.4 µm filter). Concentration of the sum of chloro-
phyll a and phaeophytin a (CChl-a) was determined with a spectrophotometer after their 
extraction using hot ethanol (ISO 10260, GF/C filter). The absorption spectra (380–800 
nm) of CDOM were measured with a spectrophotometer (5 cm long cuvette) from a 
sample filtered through a Nuclepore polycarbonate 0.4 µm filter. The absoption meas-
urements were corrected for residual scattering (due to small particles not retained by 
the filter) by subtracting absorption at 750 nm from the measured values in 400-750 nm 
(Gallie, 1994). The absorption coefficient at 400 nm (acdom(400)) was used as a measure 
of CDOM concentration. Phytoplankton species and phytoplankton biomass were de-
termined by microscopic counting. 
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The optical measurements conducted from a boat consisted of upwelling and 
downwelling irradiances (Li1800UW underwater spectrometer, LI-COR Corporation), 
and total absorption and attenuation coefficients (ac-9 absorption/attenuation meter, 
WET Labs Inc.). Downwelling and upwelling spectral irradiance (300–850 nm with a 
step of 2 nm) were measured at depths of 0.5, 1, 2 and 3 m. The Li18000UW was kept 
away (about 1.5 m) from the boat by a boom. To measure the upwelling irradiance, the 
Li1800UW instrument was turned around with the detector facing downward. The long 
integration period (40 s) resulted in noisy irradiance spectra, particularly in windy con-
ditions. To remove this intensity variation due to wave focusing, the spectra were 
smoothed by the Butterworth recursive filter method. Variation in the global radiation 
(i.e. direct solar plus diffuse sky radiation) between upwelling and downwelling irradi-
ance measurements may result in erroneous reflectance. Because of this, the underwater 
irradiances were corrected by the ratio between the average incident irradiance above 
the water surface during one measurement series (duration about 30 minutes) and the 
incident irradiance corresponding to the time of each underwater spectrum measure-
ment (Herlevi, 2002). The incident irradiance (400–1100 nm) above the water surface 
was recorded with a Li200SA sensor. 

The underwater reflectances (R) were calculated by dividing the upwelling irradi-
ance (Eu) by the downwelling irradiance (Ed) at each depth: 
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In the subsequent analyses we mainly used reflectances measured at the depth of 0.5 m. 
The diffuse attenuation coefficient Kd was calculated from downwelling irradian-
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where z is water depth. Kd(PAR) was obtained by calculating the mean Kd of the 400-
700 nm region and it ranged between 0.6 and 7.8 m-1 (Table 2). 

The wavelengths used in the ac-9 absorption/attenuation meter were 412, 440, 
488, 510, 532, 555, 650, 676 and 715 nm. The measurements were performed as depth 
profiles of the whole water column by lowering the instrument at a steady speed from 
the boat. Typically, three profiles were measured at each station. In the further analyses 
of the data, we used the average values of the measurements taken from 0–2 m. The 
obtained values were corrected for temperature and scattering according to the ac-9 
manual (WET Labs, 1995). The total scattering coefficient was obtained as the differ-
ence between the corrected attenuation and absorption coefficient. 
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2.3 Structure of the bio-optical model 

Calculation of irradiance reflectance just beneath the water surface, R(0-,λ), is 
based on the following equation (Gordon et al., 1975 and simplified by Jerlov, 1976): 
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where bb, Tot(λ) is the total backscattering coefficient and aTot(λ) is the total absorption 
coefficient. C depends mainly on the illumination and viewing geometry. Here C was 
estimated by the equation presented by Kirk (1984): 

975.0629.0 0 +−= µC  (4) 

where µ0 is the cosine of the solar zenith angle in the water. The model simulates re-
flectance in the 400-750 nm range with a step of 2 nm. Utilizing Beer's law aTot(λ) and 
bb, Tot(λ) in Eq. (3) are obtained by summing up the absorption and backscattering coef-
ficients of the optically active substances in the water. 

Similar bio-optical reflectance models to the one described here have been widely 
used in lake water quality studies (e.g. Bukata et al., 1981; Dekker, 1993; Hoogenboom 
et al., 1998a; Kondratyev et al., 1998; Podznyakov et al., 1998; Pierson and Strömbeck, 
2000). The main differences between the models are the number of the optically active 
substances included and the numerical values of the specific inherent optical properties. 
We assumed four optically active components in the model: phytoplankton, tripton, col-
ored dissolved organic matter and pure water. Tripton is non-living particulate matter 
and it mainly consists of detritus and inorganic particles. Total backscattering was cal-
culated without considering phytoplankton and tripton backscattering separately. 

The total spectral absorption coefficient is described by: 

)()()()()( λλλλλ TriPhcdomwTot aaaaa +++=  (5) 

where aw(λ ) is the absorption coefficient of pure water (Buiteveld, 1994), aPh(λ) is the 
absorption coefficient of phytoplankton, acdom(λ) is the absorption coefficient of CDOM 
and aTri(λ) is the specific absorption coefficient of tripton. 

Absorption by CDOM is calculated by assuming an exponential increase with a 
decreasing wavelength (Bricaud et al., 1981): 

)400()400()( −−= λλ cdomS
cdomcdom eaa  (6) 

where acdom(400) is the absorption coefficient of CDOM at 400 nm and SCDOM is the 
slope factor. 

Absorption by phytoplankton, aPh(λ), is calculated by: 

aChlPhPh Caa −= )()( * λλ  (7) 
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where a*
Ph(λ) is the Chl-a specific absorption coefficient of phytoplankton. 

Absorption by tripton, aTri(λ), is expressed as: 

TSSTSSTri Caa )()( * λλ =  (8) 

where is a*
TSS(λ) the specific absorption of bleached total suspended solids and CTSS is 

the concentration of TSS. Here we define absorption by tripton using CTSS, because 
tripton concentration measurements were not available. a*

TSS(λ) is described analogous 
to the calculation of acdom(λ) (Roesler et al., 1989): 

)400(** )400()( −−= λλ TriS
TSSTSS eaa  (9) 

where a*
TSS(400) is the specific absorption of bleached total suspended solids at 400 nm 

and STri is the slope factor of tripton absorption. 
The total backscattering coefficient bb,Tot(λ) is described by: 

TSSTSSTSSwwtotb Cbbpbbpb )()()( *
, λλλ +=  (10) 

where bw is the scattering coefficient of pure water (Buiteveld, 1994), and b*
TSS is the 

specific scattering coefficient of TSS. The backscattering probability of pure water, 
bpw, was set at 0.5 (Sathyendranath et al., 1989). bpTSS is the backscattering probability 
of TSS. 

We assumed that the specific scattering coefficient of TSS (b*
TSS(λ)) can be de-

scribed by a power function: 
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TSSTSS bb ⎟
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where b*
TSS(555) is the specific scattering coefficient of TSS at 555 nm and nb is the 

scattering exponent. 

2.4 Estimation of model coefficients 

Our aim was to develop a reflectance model applicable for the lake types typical 
to Finland. The most important monitoring period during ice-free conditions in Finland 
is July–August. This because of the phytoplankton biomass, the occurrence of cyano-
bacteria and the low oxygen concentrations in the hypolimnion. Therefore, we mainly 
used the SIOPs from July-August in the model parametrization. The SIOPs in spring 
can be different from those in the period July-August due to distinct phytoplankton spe-
cies and material discharge from the watershed during spring flooding. 

The Chl-a specific absorption coefficient of phytoplankton, a*Ph in Eq. (7), was 
calculated using the power function originally presented by Bricaud et al. (1995): 

)(* )()( λλλ B
ChlPh CAa −=   (12) 
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where A(λ) and B(λ) are positive empirical coefficients. Bricaud et al. (1995) published 
the average coefficients based on ocean data. Here A(λ) and B(λ) were obtained from a 
study of Ylöstalo et al. (2005) carried out in 2000 and 2002 at 10 Finnish lakes. Three 
of the lakes and five of the station in our study were the same as in Ylöstalo et al. 
(2005). According to Eq. (12) a*Ph decreases from oligotrophic to eutrophic waters. 
This is due to the package effect and the possible systematic changes between species 
composition/pigmentation and trophic level (Bricaud et al., 1995). The specific absorp-
tion coefficient of bleached total suspended solids (a*

TSS(400)) and the slope factor of 
tripton absorption (STri) were also taken from the study by Ylöstalo et al. (2005). 

The slope factor Scdom was estimated by fitting Eq. (6) to the measured acdom(λ) 
(18 spectra, wavelength range used in the optimization was 400-750 nm). Two lakes 
were excluded from the optimization: Lake Sierijärvi (high scattering in the long 
wavelength region because of ineffective filtering) and Lake Vasikkajärvi (noisy ab-
sorption spectrum arising from a cuvette that was too short for this clear water lake). 
The Scdom obtained through optimization was 0.0150 nm-1. The variation of Scdom in dif-
ferent lakes/stations was small (standard deviation = 0.000902 or 5.8% of the mean, 
min = 0.0136 nm-1, max = 0.0175 nm-1). 

The specific scattering coefficient, b*
TSS(555), and the scattering exponent, nb, 

were estimated from the ac-9 measurements. The specific scattering coefficient 
(b*

TSS(λ)) was calculated for the nine ac-9 wavelengths by: 

TSS

wTot
TSS C

bb
b

)()(
)(* λλλ −

=  (13) 

where bTot(λ) is the total scattering measured with the ac-9. The mean value of the 
b*

TSS(555) was 0.811 l m-1 mg-1 (mean of August without Sie-a and Puu-a, n=13, the 
name abbreviations are explained in Table 1 and Table 2) and the scattering coefficient 
nb obtained through optimization against the measured b*

TSS(λ) was 0.70 (August 
without Sie-a, n=14). Sie-a was excluded from the estimations because of the non-
linearity in the ac-9 measurements. The reliable measurement of a and b with ac-9 in 
this very eutrophic lake would require a shorter optical pathlength than the 25 cm used 
in our study ( ac-9 is available also with 10 cm pathlength, WET Labs, 1995). In waters 
with high c the 25 cm pathlength results in poor resolution and unreliable a and b. 

In addition, the backscattering ratios are needed for the calculation of bb,Tot (Eq. 
10). The backscattering probability of TSS (bpTSS) was estimated by fitting the modeled 
reflectance spectrum (Eq. 3) with the 12 reflectance spectrum measured with the LI-
1800UW. The 400–448 nm range was not included in the analyses, because of the diffi-
culties in measuring the low irradiance levels and possible instrument self-shading in 
the blue end of the spectrum. We assumed the backscattering ratios to be constant over 
the whole wavelength range. All the optimized coefficients (SCDOM, nb, bpTSS) were de-
termined with least-squared method using the Nelder-Mead simplex search technique 
(Nelder and Mead, 1965). 
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2.5 Estimation of water quality 

The applicability of the channel configurations of MERIS, MODIS (1 km data) 
and ETM+ for the estimation of OAS were tested using the inversion technique and the 
empirical algorithms. For these experiments reflectances were averaged for the satellite 
instrument channels (Table 3). The wavelength range used in the inversion and empiri-
cal methods was 450-750 nm. For this reason the MODIS channel 8 (743–753 nm) and 
the MERIS channel 10 (750–757.5 nm) were replaced by 744–750 nm. Channel 2 
(438–448 nm) of MERIS and MODIS was replaced by 450–460 nm. In addition, we 
examined whether the use of the full reflectance spectrum (450–750 nm with a step of 2 
nm) improved the estimation accuracy of OAS. Before the empirical analyses using the 
full spectrum the 10 nm moving averages were calculated for every R(λ). 

Table 3. Channels of ETM+, MODIS (1 km data) and MERIS satellite instruments in the 400-760 nm 
range. The same channels (except MODIS and MERIS channel 1) were used in the OAS estimations. 

Wavelength range nm Channel 
number ETM+ MODIS MERIS 

1 450-520 405-420 407.5-417.5 
2 530-610 438-448 (this study: 450-460) 437.5-447.5 (this study: 450-460) 
3 630-690 483-493 485-495 
4  526-536 505-515 
5  546-556 555-565 
6  662-672 615-625 
7  673-683 660-670 
8  743-753 (this study: 743-750) 677.5-685 
9   700-710 
10   750-757.5 (this study: 743-750) 

The applied inversion method is based on the maximum likelihood method as-
suming that the forward (reflectance) modeling error is normally distributed. Following 
this, the maximum likelihood estimate for multiple variables is obtained by searching 
the maximum value of a multi-dimensional Gaussian conditional probability density 
distribution. When the modeling errors of different channels are assumed to be inde-
pendent from each other, the obtained constrained minimization problem for the joint 
estimation of CTSS, CChl-a and acdom(400) is: 
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where iσ  is the standard deviation of statistical reflectance modeling error for channel 
i. Ri,sim and Ri,mea are the simulated and measured reflectances for channel i, respec-
tively. iσ  is estimated using the root mean squared error (rmse), which is calculated 
from the residual errors between the measured and simulated reflectances (Eq. 16). The 
simulated reflectances for the 12 stations were obtained using measured CTSS, CChl-a and 
acdom(400) as model input. In practice, each inverse variance term, iσ -2, weights each 
channel according to its estimated modeling accuracy. Eq. (14) can be used with any 
spectral channel configuration or using averaged channels. However, the minimum 
number of channels (n) has to be as high as the number of estimated variables in order 
to avoid an ill-posed inversion problem. 

The best empirical algorithms were identified by calculating correlations of CTSS, 
CChl-a and acdom(400) with all R(λ) (450–750 nm with a step of 2 nm) and all possible 
ratios of two R(λ). The general formulation of the empirical algorithms was: 

bXaCi +=  (15) 

where Ci is the concentration of variable i, a and b are empirical parameters and X is an 
independent variable (reflectance of a single channel or reflectance ratio of two chan-
nels). 

The accuracy characteristics of the model and OAS algorithms were defined by 
R2 and root mean squared error (rmse), which is defined as: 

2

1

)ˆ(1 ∑
=

−
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=
N

i
ii YY

pN
rmse  (16) 

where iŶ  is the estimated value and iY  is the measured value. p=0 in calculating the 
residual error of the optimization problem (Eq. 14) and in calculating rmse of the inver-
sion estimates, and p=2 for the empirical algorithms. The relative rmse (%) was calcu-
lated from the rmse and the measured average value. 

3. Results 

3.1 Bio-optical reflectance model 

The simulated (Eq. 5) and measured (ac-9) atot are presented in Fig. 1. At three 
Lohjanjärvi stations (Loh1-a, Loh2-a, Loh3-a), the simulated atot is slightly higher than 
the measured atot. The specific backscattering coefficient at 555 nm (b*

b,TSS(555) = bpTSS 
· b*

TSS(555)) was estimated by optimizing the backscattering probability (bpTSS) of the 
reflectance model. This resulted in bpTSS=0.0131, corresponding to b*

b,TSS (555) of 
0.0106 l m-1 mg-1. The model coefficient are summarized in Table 4. The simulated and 
measured reflectances for the 12 stations are shown in Fig. 2. The biggest discrepancies 
were in the eutrophic lakes (Sie-a, Ena-a, Loh1-a). 
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Fig. 1. Simulated (—) and measured (o, with ac-9) total absorption coefficients (atot) without the contri-
bution of pure water. The measured atot of Sie-a station were not included due to the non-linearity of the 
ac-9 measurements. The scale of the x-axis varies by station. 

 

Fig. 2. Measured (      ) and simulated (—) R(λ) of 12  stations. R2 = 0.921, rmse = 24.8%. 
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Table 4. The coefficients of the reflectance model. 

Coefficient Symbol Value Source 

Absorption coefficient of pure water aw(λ) see the reference Buiteveld (1994) 
Specific absorption of phytoplankton a*

ph(λ) see the reference Ylöstalo et al. (2005) 
Slope factor of CDOM absorption SCDOM 0.0150 nm-1 18 stations of this study 
Specific absorption of bleached TSS at 400 nm a*

TSS(400) 0.13 l m-1mg-1 Ylöstalo et al. (2005) 
Slope factor of tripton absorption Stri 0.012 nm-1 Ylöstalo et al. (2005) 
Specific scattering of TSS at 555 nm b*

TSS(555) 0.811 l m-1mg-1 13 stations of this study 
Scattering exponent of TSS  nb 0.705 14 stations of this study 
Scattering coefficient of pure water bw(λ) see the reference Buiteveld (1994) 
Backscattering probability of pure water bpw 0.5 Sathyendranath et al. 1989 
Backscattering probability of TSS bpTSS 0.0131 12 stations of this study 

3.2 Estimation of water quality 

The weight term ( 22/1 iσ ) in the constrained minimization problem of the inver-
sion method (Eq. 14) was obtained by calculating the rmse(λ) between the measured 
and simulated R(λ) (Fig. 3). The rmse was highest at 560, 630 and 700 nm, mainly due 
to the discrepancies in the measured and simulated R in the mesotrophic and eutrophic 
stations. 

 

Fig. 3. rmse between the measured and simulated R(λ). 

The statistical accuracy characteristics of the inversion based water quality esti-
mates are presented in Table 5. The results were examined mainly by using the rmse, 
which in our dataset was more sensitive to the accuracy differences than R2. The results 
from the MERIS and MODIS inversions were very similar (Fig. 4). In the case of CTSS 
and acdom(400) the rmse was slightly lower for MERIS than for MODIS. Both MERIS 
and MODIS inversions overestimated the highest acdom(400) (Sie-a). In case of CChl-a 
the high concentrations were estimated accurately, but at the low concentrations the 
correlation was low. The estimation accuracies with the MERIS and MODIS inversions 
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were almost as good as in the inversion that used the whole reflectance spectrum with a 
2 nm step (Fig. 5). The three highest values of CTSS and CChl-a were clearly 
underestimated in the ETM+ based inversion (Fig. 4), but CTSS below 10 mg l-1 were in 
general estimated accurately. The best overall results with ETM+ inversion were 
obtained for acdom(400) that yielded a rmse only slightly lower than in case of MERIS 
and MODIS. 

 

Fig. 4. Measured and estimated OAS with the inversion method using MERIS channels 2-10 (a-c), 
MODIS channels 2-8 (d-f) and ETM+ channels 1-3 (g-i). 

In the empirical algorithm study, the correlation between CTSS and R(λ) increased 
with longer wavelengths (until the 700–730 nm region). The best correlation was ob-
tained with MERIS channel 700-710 nm (rmse=18.1%, R2=0.978, Fig. 6, Table 6). In 
case of MODIS, the channel at 747 nm yielded the highest correlation with CTSS 
(rmse=22%, R2=0.968) The correlation of the ETM+ channel 630-690 nm with CTSS 
was lower than in case of the mentioned MERIS and MODIS channels. The best corre-
lation of CChl-a was obtained with the MERIS channel ratio R705/R665 (rmse=27%, 
R2=0.958). The MODIS channel ratio R747/R667 yielded clearly lower correlations 
(rmse=41%, R2=0.904). In case of ETM+, CChl-a could be approximately estimated with 
the same empirical algorithm as CTSS (based on the 630-690 nm channel, Fig. 6(h)), 
which can be explained by the strong correlation (R2 = 0.98, n=12) between CChl-a and 
CTSS. Several channel ratios between reflectance in the 620-730 nm range and R in the 
445-600 nm range yielded high correlations with acdom(400). The ratio between R cen-
tered in the 660–667 nm and R centered in the 485–490 nm resulted in the lowest rmse 
(13–16%, Fig. 6, Table 6) for all three channel configurations. 



 Kari Kallio, Jouni Pulliainen and Pasi Ylöstalo 44

 

Fig. 5. Measured and estimated OAS with the inversion method using the whole spectrum (450-750 nm). 

Table 5. Statistical accuracy characteristics of the inversion based estimates. The correlations are shown 
in Figs. 4 and 5. 

Variable Channel  
configuration R2 rmse 

% 

CTSS Full spectrum 0.974  20.7 
 MERIS 0.973  19.8 
 MODIS 0.966  25.0 
 ETM+ 0.967  58.8 
CChl-a Full spectrum 0.980  25.0 
 MERIS 0.943  29.1 
 MODIS 0.903  37.3 
 ETM+ 0.659  105.6 
acdom(400) Full spectrum 0.964  28.8 
 MERIS 0.968  34.0 
 MODIS 0.975  31.6 
 ETM+ 0.933  25.9 

Table 6. Empirical algorithms with statistical accuracy characteristics. The correlations are shown in Fig. 6. 

Variable Channel  
configuration Algorithm R2 rmse 

% 

CTSS MERIS CTSS = 247 R700-710 – 0.506 0.978 18.1 
 MODIS CTSS = 811 R743-750 – 0.116 0.968 21.8 
 ETM+ CTSS = 324 R630-690 – 2.08 0.820 51.9 
CChl-a MERIS CChl-a = 76.7 R700-710/R660-670 – 52.7 0.958 26.7 
 MODIS CChl-a = 186 R743-750/R662-672 – 27.6 0.904 41.3 
 ETM+ CChl-a = 1120 R630-690 – 7.30 0.720 69.1 
acdom(400) MERIS acdom(400) = 2.96 R660-670/R485-495 – 0.588 0.979 14.2 
 MODIS acdom(400) = 2.94 R662-672/R483-493 – 0.659 0.980 13.6 
 ETM+ acdom(400) = 3.03 R630-690/R450-520 – 1.19 0.974 15.9 
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Fig. 6. Measured and estimated OAS by empirical algorithms using the channels of MERIS (a-c), 
MODIS (d-f) and ETM+ (g-i). The channel or channel ratio applied is shown in each subfigure. 

The analyses of all possible two channel ratios and single channels of the full re-
flectance spectrum (450–750 nm with a step of 2 nm) did not reveal any new CTSS and 
CCDOM algorithms that would have been more accurate than the best algorithms using 
the satellite instrument channels. With regard to CChl-a, the introduction of the 665–675 
nm channel (CChl-a = 65.3 R700-710/R665-675 - 43.8) resulted in slightly lower rmse (21.7%) 
than the use of MERIS channel ratio(R700-710/R660-670) (rmse=26.7%, Table 6). 

4. Discussion 

4.1 Reflectance model 

This study provided extensive data for testing the bio-optical reflectance model, 
because of large differences in water quality between the lakes. Our objective was to 
construct a model that could be used as an interpretation tool in applying remote sens-
ing techniques to Finnish lakes in the period July–August. The reflectances were cal-
culated using the concentrations of OAS (CTSS, CChl-a and acdom(400)) at each station, 
while the SIOPs were assumed to be the same in all lakes (with the exception of CChl-a 
dependent a*ph). 

The ability of the bio-optical reflectance model to simulate the measured reflec-
tance mainly depends on how well the SIOPs are known. The backscattering 
probability of TSS (bpTSS=0.0131) was estimated here by calibrating the model against 
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measured reflectances. This value is close to the value reported for Dutch lakes (0.0157, 
Dekker 1993). The resulting b*

b,TSS (555) of 0.0106 l m-1 mg-1, calculated from the 
backscattering probability and the scattering coefficient, is also in agreement with other 
lake studies. In the Dutch Lake IJsselmeer, for example, the b*

b,TSS (550) was 0.011 l m-

1 mg-1 (Hoogenboom et al., 1998a), and Heege and Fischer (2004), assuming 
wavelength independent backscattering, reported a specific backscattering coefficient 
of 0.0086 l m-1 mg-1 for Lake Constance, Germany. 

The biggest discrepancies in the reflectance simulations were in the eutrophic 
lakes, namely Enäjärvi, Sierijärvi and at station Loh1-a of Lake Lohjanjärvi. (Fig. 2). 
This may be due to the fact that in eutrophic lakes the absorption and backscattering 
properties of phytoplankton have a strong impact on the reflectance. These properties 
can differ considerably depending on the dominating phytoplankton species, but they 
could not be taken into account in the model because the lake specific SIOPs of phyto-
plankton were not available. Here we used the average, CChl-a dependent a*

ph(λ) (Eq. 
12) of Finnish lakes in August conditions, although a*

ph(λ) can vary according to the 
species composition, the physiological state of phytoplankton and the prevailing light 
conditions. In the eutrophic lakes of this study the phytoplankton species composition 
was diverse. For example, in Lake Lohjanjärvi (Loh1-a) and in Lake Sierijärvi (Sie-a) 
the phytoplankton biomass was dominated by two cyanobacteria: Nostocales (83% of 
the biomass) and Chroococcales (72%), respectively. By contrast, in Lake Enäjärvi 
photoplankton was more heterogeneous: Dinophyta (28%), Chroococcales (24%), 
Nostocales (19%), and Chlorophyceae (19%). 

Backscattering was here calculated without the separation of total particles into 
tripton and phytoplankton. The specific backscattering coefficient of phytoplankton can 
vary between phytoplankton species due to the variations in shape and in refractive in-
dex of phytoplankton cells. For example, cyanobacteria with gas-vacuoles have high 
scattering coefficients (Ganf et al., 1989). Unfortunately, however, direct measurements 
of scattering properties of phytoplankton are few. As a consequence, the estimation of 
backscattering properties of phytoplankton in bio-optical modeling of lakes (Dekker, 
1993; Kutser, 1997; Strömbeck, 2001) has mainly been based on the research results of 
the ocean phytoplankton (e.g. Morel, 1980; Sathyendranath et al., 1989; Ahn et al., 
1992). 

The model seems to overestimate reflectance in the short wavelength region 
(400–450 nm). The measured reflectances in this region were not reliable in the lakes 
with high acdom(400), because in the short wavelengths the upwelling and downwelling 
irradiances (due to strong absorption by CDOM) were low and their measurement accu-
racy was poor. In addition, the upwelling irradiance measurements were not corrected 
for the instrument self-shading. Self-shading leads to underestimation of the measured 
reflectance and it depends on the radius of the instrument, absorption coefficient, solar 
altitude, and on the ratio between diffuse and direct solar irradiance (Gordon and Ding 
1992). The correction methods (Gordon and Ding, 1992; Zibordi and Ferrari, 1995) 
for instrument self-shading have been mainly developed for the ocean waters and they 
have not been tested in waters with high CDOM levels. The correction methods also 
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require knowledge on the ratio between diffuse and direct solar irradiance, which was 
not available for our field measurements. The error due to self-shading increases with 
increased absorption. Most of our study lakes have high CDOM concentrations and the 
biggest error is therefore expected in the blue region of the spectrum. This region (400–
448 nm) was not included in the determination of bpTSS and in the inversion calcula-
tions. 

The slope factor of CDOM absorption used here (0.0150 m-1) lies within the 
range that has been reported for lakes in Estonia and Finland (mean value 0.016-0.017, 
Sipelgas et al., 2003) and Sweden (mean value 0.015, Pierson and Strömbeck, 2001). 
The comparison of published SCDOM are, however, difficult because of differences in 
the wavelength range used in the estimation of SCDOM, in the filter type (pore size) and 
in the method to correct spectrophotometric measurements for the residual scattering. 

4.2 Inversion 

In the inversion of full reflectance spectrum, acdom(400) was overestimated at the 
most eutrophic station Sie-a (Fig. 5(c), measured acdom(400) = 18.2 m-1). One explana-
tion for this may be the exceptional b*

b,TSS(555) of Sie-a. Another reason could be the 
underestimation of the measured R at 450–500 nm arising from the low measurement 
accuracy of low irradiance levels. This was further confirmed by the use of the 500–750 
nm region instead of 450–750 nm in the inversion, which decreased the acdom(400) es-
timate from 22.8 m-1 to 19.1 m-1. In a study of error propagation on inversion of irradi-
ance reflectance in Lake Constance, Gege (2002) concluded that the two most impor-
tant sources of error in the estimation of acdom(400) were SCDOM and CTSS . The estima-
tion CTSS was not critically effected by errors of other OAS, but was sensitive to the 
specific backscattering coefficient. 

CChl-a was estimated with a lower accuracy than CTSS, and acdom(400), particularly 
at low CChl-a concentrations. This could be due to the fact that absorption by CDOM 
shadows the first absorption maximum (at 440 nm) of Chl-a and that the second ab-
sorption maximum (at 675 nm) is quite narrow. Also noise in the measured reflectance 
together with variation in the specific absorption and backscattering properties of 
phytoplankton can reduce the estimation accuracy of CChl-a. The low estimation accu-
racy of CChl-a by inversion in 'case-2' waters has also been reported by Lahet et al. 
(2000) and Gege (2002). According to Gege (2002) CChl-a estimation by inversion in 
Lake Constance was very sensitive to errors in acdom(400) and Scdom and they must be 
known with an accuracy of a few percent if a CChl-a error of 25% is required. 

In our study the estimation accuracy of OAS by inversion is somewhat better than 
those obtained in similar lake studies with large variations in water quality (Kutser et 
al., 2001; Pierson and Strömbeck, 2001). However, the comparison to those two earlier 
studies is difficult, because the applied optimisation method and the possible weighting 
factors for different wavelengths were not described in detail. 



 Kari Kallio, Jouni Pulliainen and Pasi Ylöstalo 48

4.3 Empirical algorithms 

The best empirical CTSS and CChl-a algorithms of our study are the same as those 
found in shipborne and airborne reflectance or radiance measurements in several lake 
regions (e.g. Millie et al., 1992; Dekker, 1993; Gitelson et al., 1993; Schalles et al., 
1998; Kallio et al., 2001; Pierson and Strömbeck, 2001; Kallio et al., 2003). The widely 
used NIR/red- ratio (ratio of two channels at about 705 and 670 nm) in the CChl-a algo-
rithm is based on the Chl-a related absorption maximum at about 675 nm. The 705 nm 
wavelength region is a good normalizing channel because absorption by other OAS is 
low and reflectance is mostly influenced by backscattering. For the same reason the re-
flectance in the 700-730 nm region is optimal for estimating the CTSS. 

The best empirical acdom(400) algorithm (based on R662-672/R483-493) confirms the 
findings of Pierson and Strömbeck (2000). Based on the simulated water leaving radi-
ance reflectances of three largest lakes in Sweden, Pierson and Strömbeck (2000) con-
cluded that acdom(412) was best predicted by linear regression against a channel ratio of 
wavelength > 600 nm to a wavelength in the 400-580 nm range. In one of the lakes 
studied by Pierson and Strömbeck (2000), the use of the Chl-a absorption channel (660-
680 nm) yielded higher correlations than the remaining wavelengths at >600 nm. In this 
algorithm reflection changes due CDOM absorption in the short wavelength region are 
normalized by changes in reflection not related to CDOM in the longer wavelengths. 
The 660-680 nm is the best region for normalization, and is probably due to the small 
variation in reflectance. The increase in reflectance due to increased backscattering by 
phytoplankton in this region is balanced by the decrease in reflectance due to phyto-
plankton absorption. Our study shows that even the wide channels of ETM+ (ratio R630-

690/R450-520) yielded almost as low rmse as the narrow channels of MERIS and MODIS 
in the estimation of acdom(400). Kutser et al. (2004) used a ratio based on the channels 
530–610 and 630–690 nm of satellite data (EO-1 ALI) in the regional estimation of 
CDOM in lakes. They did not use channel 1 (450–520 nm) in the algorithm, because of 
uncertainties in the atmospheric correction in the blue region of the spectrum. In our 
experiment the ratio R630-690/R530-610 yielded a rmse of 44% (R2=0.80), but without the 
most eutrophic Lake Sierijärvi the rmse was as low as 14.4% (R2=0.98). 

The strong correlation between OAS can lead to purely empirical algorithms that 
are not based on the optical properties of the OAS in question and therefore they may 
not be generally valid. Our dataset was characterized by a strong positive correlation 
between CChl-a and CTSS. Because of this correlation CChl-a could be approximately esti-
mated with the same algorithm as CTSS in case of the ETM+ channels. The rest of the 
best empirical algorithms of this study can be considered as semi-empirical, because 
they can be explained by the optical properties of OAS. 

4.4 Comparison of the channel configurations 

MERIS has the best channel configuration of the three tested satellite instruments 
for the estimation of OAS by the inversion and empirical algorithms in the studied 
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lakes. In the case of CTSS and CChl-a the accuracy of MODIS was close to that of 
MERIS. The essential difference between MERIS and MODIS is that MERIS has the 
705 nm channel, which improves the accuracy of the estimation of CTSS and CChl-a, par-
ticularly when using the empirical algorithms. The channel configuration of MERIS has 
one additional advantage as compared to MODIS. The 620 nm channel can namely be 
utilized in the estimation of the cyanobacteria pigment phycocyanin (Dekker, 1993; Si-
mis et al., 2005). 

The wide channels of ETM+ were less suitable for the estimation of CTSS and 
CChl-a than the narrow channels of MODIS and MERIS. However, the low concentra-
tions of CTSS (< 7 mg l-1) were estimated accurately using the ETM+ inversion. At some 
stations even the high CTSS were estimated accurately with the empirical ETM+ algo-
rithm based on the ETM+ channel 3 (630–690 nm). Reflectance in this wavelength re-
gion is influenced, for example, by the phytoplankton absorption, which probably 
causes large variation in the accuracy of the estimation of CTSS in meso-eutrophic lakes. 
The exception in the channel configuration comparison was acdom(400), which was es-
timated by the empirical methods and inversion with about the same accuracy for all 
three instruments. Although the ETM+ channel configuration is designed for land ap-
plications, it seems to be suitable for the estimation of acdom(400) in the boreal lakes. 

According to the results MERIS has optimum channels (490, 665 and 705 nm) for 
the OAS estimation by empirical methods, since the best algorithms using the full 
spectrum were in practice the same as in case of MERIS. In the inversion the use of the 
whole spectrum (450-750 nm, 151 channels) instead of the MERIS channels improved 
only slightly the estimation accuracy of OAS. It is obvious that the inversion method 
could be improved if the lake-specific SIOPs were available. The inversion method is 
also sensitive to the measurement accuracy of the whole reflectance spectrum; in our 
CDOM rich lakes the measurement of low reflectance at the blue end of the spectrum is 
problematic. 

Our study shows the potential of different channel configurations for estimating 
OAS. When applying actual remote sensing data for OAS estimations, the overall re-
sults are additionally affected by atmospheric disturbance, surface reflectance and in-
strument characteristics (SNR, radiometric characteristics). The estimation accuracy of 
the OAS using the actual satellite instrument data, particularly in case of the inversion 
method, depends additionally on how well these factors can be taken into account when 
converting the radiance measurements at the instrument level to the subsurface reflec-
tance. The use of the long wavelength channels (e.g. the 747 nm channel of MODIS) 
for the estimation of CTSS by satellite remote sensing may be difficult, because of the 
low radiance levels. Short wavelengths (400–450 nm) were not included in our analy-
ses. When working with actual remote sensing data this region can also be problematic 
due to low radiance of the CDOM-rich lakes and strong disturbance by the atmosphere. 
Unlike MERIS and MODIS, LANDSAT ETM+ was not designed for water applica-
tions. Because of this (e.g. low SNR, 8-bit data) the accuracy decrease can be expected 
to be higher than in the case of MERIS and MODIS, if actual satellite instrument data is 
used. 



 Kari Kallio, Jouni Pulliainen and Pasi Ylöstalo 50

5. Conclusions 

In the development of the remote sensing algorithms for water quality estimations 
in a specific region, there is a need to identify optimum channel configurations and in-
terpretation methods. Such studies should be based on the knowledge of how OAS and 
their SIOPs influence the reflectance in different parts of spectrum. SIOPs are essential 
for the inversion method, but they are also important for the development and use of 
empirical algorithms, for example in selecting the optimum channels and with regard to 
the limitations of their use in a specific region or season. The lakes in this study repre-
sent the boreal region, where CDOM concentrations are typically high, and CChl-a and 
CTSS can vary considerably. The high CDOM levels, for example, mean that CDOM 
absorption shadow the optical signature of phytoplankton in the blue region of the 
spectrum rendering the blue/green ratio based CChl-a algorithms useless. 

Empirical methods usually require in situ water sampling in cloudless conditions 
concurrent with the satellite overpass, but they are simple to apply. Additional advan-
tage of the empirical algorithms is that OAS can be estimated employing just a few 
channels (e.g. the MERIS channels 490, 665, 705 nm). The applicability of the 705 nm 
channel, important for CChl-a and CTSS estimations, has been proved by airborne remote 
sensing (e.g. Dekker, 1993; Kallio et al., 2001), but the usability of this channel as 
measured from the space needs to be established. According to our results empirical 
algorithms were in general more accurate than the inversion method. The difference 
was most evident in the case of acdom(400). However, the results obtained here are pre-
liminary, because of the low number of stations and because the same dataset was used 
in model calibration and in testing the algorithms. Therefore, the algorithms presented 
here should be further tested with an independent dataset. 

The inversion method requires knowledge of the SIOPs, which should be prefera-
bly determined for each lake. The inversion also calls for a proper atmospheric correc-
tion of the satellite images. Unfortunately, the standard atmospheric corrections of the 
ocean colour instruments are not directly valid for areas such as the boreal region, 
where OAS concentrations are often high and atmospheric characteristics differ from 
those assumed for the standard atmospheric corrections (e.g. Ruddick et al., 2000; 
Siegel et al., 2000). The advantage of the inversion method is, on the other hand, that 
once the SIOP's (lake specific, seasonal) have been determined the inversion can be ap-
plied to satellite data without concurrent reference measurements of the OAS concen-
trations. 

Ocean colour instruments such as MERIS and MODIS provide images on a daily 
basis, but their spatial resolution is suitable only for large lakes. This presents problems 
in Finland, where although the total number of lakes is about 56 000, most are small 
(95% of the lakes have an area < 1 km2). However, the next generation ETM+ instru-
ment, namely ALI, with its improved radiometric characteristics and a spatial resolution 
of 30 m, might be suitable for estimating CTSS (although not in eutrophic lakes) and 
Ccdom. 
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