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Abstract 

Character of the stress-strain relation σ(ε) of sedimentary rocks depends on the strain level in a 
range of ε~10-6÷10-3. Nonlinearity and a hysteresis in the σ(ε) are caused by microplasticity. Static and 
dynamic elastic modulus and seismic velocity may either increase or decrease with strain. Microplastic 
strain of saturated rock considerably grows and this results in nonlinear stress-strain relation (equation 
of state). Therefore, curvature of σ(ε) is explained by microplasticity. In this case the seismic velocity 
decreases with strain, if the curvature of σ(ε) is negative, while it increases with strain, if the curvature 
of σ(ε) is positive. In our paper we experimentally show that the longitudional wave velocity increases 
with increasing strain amplitude for a dolomite having a positive curvature in the σ(ε). Therefore, stress-
strain relation σ(ε) received for large deformations cannot be used for modeling of nonlinear wave 
propagation at intermediate and small strain levels. Model for nonlinear wave propagation should take 
into consideration small-strain relations σ(ε). 

Key words: the stress-strain relations, microplasticity, hysteresis, the strain-amplitude dependence, 
nonlinear wave propagation 

1. Introduction 

Nonlinear effects in rocks are observed at moderate and even small strain levels  
(ε > 10-6) (Winkler et al., 1979; Mashinsky, 1994; Johnson et al., 1996; Zinzner et al., 
1997; Tutuncu et al., 1998a; Xu et al., 1998; Mashinskii and D`yakov, 1999). These ef-
fects are caused by nonlinearity and hysteresis of a stress-strain relationship σ(ε). 
Therefore, studying of the σ(ε) is very important. It defines the equation of state and it 
is the principal theoretical component in static and dynamic studies. 

Dependencies σ(ε) are received from laboratory quasi-static measurements or in 
situ for large deformations, that is, in the near source region (Boitnott, 1993) and rarely 
for small ones (McKavanagh and Stacey, 1974). However, small deformations are of a 
great interest in seismic prospecting and seismology. Direct measurements of the stress-
strain relationship σ(ε) have shown that physical nonlinearity of this relationship is 
caused by microplasticity of rocks (Mashinsky, 1994). Microplasticity essentially 
changes representation of elastic and nonelastic behavior of rocks and explains depend-
ence of the elastic modulus on strain and the non-closed hysteresis in a simple way. 
Physical mechanisms of rock`s microplasticity may be the same as in metal polycrystals 
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(movement of dislocations) or any others. Microplasticity does not exclude known 
mechanisms (stick-slip friction, grain contact adhesion hysteresis, discrete memory) 
(Stewart et al., 1983; McCall and Guyer, 1994; Johnson et al., 1996; Tutuncu et al., 
1998b; Xu et al., 1998). 

The principal theoretical component in static and dynamic studies is the stress-
strain relationship σ(ε). A negative curvature in the σ(ε) corresponds to decrease of the 
static modulus with stress, while a positive curvature in the σ(ε) corresponds to increase 
of this modulus with stress (McCall and Guyer, 1994). If similar rule acts for the dy-
namic stress-strain relationship σ(ε), then the dynamic modulus (wave velocity) will 
also follow this rule, i.e. the modulus will either decrease or increase with stress ampli-
tude depending on character of the curvature. 

A possible physical reason of such behaviour of the elastic modulus is as follows. 
Consider total strain that consist of three main components (Mashinskii, 2003): 

i i e v e− − µε = ε + ε + ε  (1) 

where the component i e−ε  represents an ideally elastic (“atomic” elastic) Young's 
modulus ,i e i i e− −Ε = ∆σ ∆ε  corresponding to deformation of the monocrystalline grains 
of rock skeleton. Second and third terms in (1) represent the anelastic component. The 
strain εv-e corresponds to viscoelastic behavior of rocks dependent on the magnitude and 
time of stress. For example, in a Maxwell model, viscoelastic strain (for σ = constant) is 
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where tσ is the time of the stress duration; efη  is an effective viscosity; rel ef iT E= η  is 
the relaxation time, i i iE = ∆σ ∆ε  is instantaneous Young's modulus. 

The εµ is microplastic strain; it is residual deformation. On the one hand, the mi-
croplastic strain is the time-independent deformation, however, on the other hand, it is 
the amplitude-dependent deformation. Instantaneous (local) Young's modulus is given 
by 
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where ( )v e t− σ∆ε  is the time-dependent viscoelastic component and ( )µ∆ε ε  is the 

strain-dependent microplastic component (with variable sign). The subscript index µ is 
microplasticity. 

Studying of the anelasticity of many rock types using stress-strain relationship 
σ(ε) has shown that the behavior of anelastic component (residual strain) is different: a 
negative curvature of σ(ε) takes place often, while a positive curvature of it is seldom 
observed (Mashinskii, 1989; 1994; 2001). A negative curvature of σ(ε) means that the 
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elastic modulus decreases with stress and a positive curvature means that it increases 
with stress. It follows from the equation (3). 

Usually the components , ( ), ( )i e v e t− − σ µ∆ε ∆ε ∆ε ε  increase with increasing stress 

for the most rock types. Therefore, the elastic modulus Ei in (3) decreases. However in 
individual rocks the anelastic component (at least microplastic component) can 
decrease with stress. It takes place, for example, in dolomite and argillite (Mashinsky, 
1994). The decrement of anelastic component ( ) ( )anelastic v e t− σ µ∆ε = ∆ε + ∆ε ε  means that 
the modulus iE  in (3) increases. The decrement of v e−∆ε  is possible if the relaxation 
time relT  depends on the stress. Then the value ( )v e relT−∆ε  ( )t constσ =  decreases and 
the modulus iE  increases with stress under condition that the increment of relT  occurs 
as well. This is just a hypothesis and an additional study is required to test it. On the 
contrary, the microplastic strain can decrease with increasing stress and, consequently, 
the modulus can increase owing to microplastic component. The non-standard behav-
iour of the modulus under unloading is possible as well owing to microplasticity. The 
classic viscoelastic mechanism does not suppose such behavior. 

There is an explanation of a difference between measured static and dynamic 
Young’s moduli. It is caused by different anelastic contributions to the stress-strain re-
lationship that behaves as a function of strain amplitude and frequency (energy and 
strain rate). The increment of frequency, that is, the speed deformation leads to the dec-
rement of the time-dependent viscoelastic component ( ( )v e t− σ∆ε ). Then according to 
the equation (3), the modulus iE  increases with increasing frequency. As the 
microplastic component ( ( )µ∆ε ε ) is time-independent, it does not contribute to 

deformation, if strain (stress) does not change. However, the microplastic component 
contributes to deformation, if the strain changes. The microplastic component can either 
increase or decrease with strain. The decrement of the microplastic contribution with 
increasing strain is possible, owing to the “resorptional” (diffused) effect. It leads also 
to the increment of the modulus with increasing strain (Mashinsky, 1994). 

Microplastic contribution in the total strain varies with strain level and strongly 
influences σ(ε). The stress and strain change in wide range at propagation of seismic 
waves. Therefore it is important to analyse the relationship σ(ε) in various deformation 
ranges and compare saturated and dry rocks. As seismic wave velocities and attenuation 
depend on the strain amplitude for a wide variety of rocks, non-linear and non-unique 
stress-strain relations can affect these parameters. Some results received in this 
direction are presented in this paper. 

2. Technique of research 

The experimental curves σ(ε) were analyzed in a range of ε ~ 4·10-6 - 10-3. The 
purpose of experiments was tracing of changes of σ(ε) and of the elastic moduli with 
change of the strain level. The three-dot bend technique and discrete loading - unload-
ing was used (Tushinsky and Plochov, 1985; Mashinsky, 1994), Figure 1. The sample 1 
is a rectangular parallelepiped (length l =70mm, width b =5-10mm, thickness h = 2-
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5mm) that lays on two fulcrums 2. Force F as loads of various weight is applied in the 
middle of a sample. The deflection of a sample f is measured with a help of an optical 
microscope 4. An easy long probe 3 is fixed at an end face of a sample for increase of 
sensitivity of measurements. Length of optical lever L is 10 times more than a half of 
length of a sample l. There is a small head with a vision line as a triangle on the end of 
the probe. The optical eyepiece-micrometer is established opposite the vision line. 
Readings on a microscope scale are made by eye. Small deflection (α < 3 °) and the re-
lation l/h > 7 provide the deformation of one-axis stretching. The maximal deflection 
fmax does not exceed 0.3мм and the deviation of a vision line is Hmax = 10fmax = 3mm. 
The constant loading was put for imitation of lithostatic pressure of 1.5MPa. Speed of 
loading in quasi- static regime was maintained as a constant and corresponded to a 
seismological frequency range (~ 0.01-2Hz). 

Fig. 1. Experimental scheme. 1 - a sample; 2 - basic prisms; 3 - the lengthening stake with a head at an 
end; 4 - an eyepiece-micrometer (microscope); F - upload force; f - a deflection of a sample; α – a deflec-
tion angle of stake; H - a deviation of vision mark; l - length of a sample; L - the optical lever. 

The stress and strain in a sample is calculated using formulas (Mashinsky, 1994): 

σ = 3lF / 2bh2. (4) 

ε = 0.6hH / l2. (5) 

The absolute error of measurement of strains is ± 0.5·10-6. It does not exceed 2 % 
in moderate strain range, and reaches 12 % in small strain range. The diagrams σ(ε) 
were plotted and values of the Young’s modulus were determined using calculated 
stresses and strains. The determination of the absolute value of the Young’s modulus 
was not put here because our interest was relative change of an average Young’s 
modulus. It was determined from the curve σ(ε) as: Ei = ∂σi/∂εi. Reproducibility of 
curves was checked up by a number of duplicating measurements of σ(ε) from identical 
samples. The rocks were studied from different locations. The duplicating samples were 
cut out from the same piece of each rock. Deviations of the duplicating curves from 
some average curve did not exceed several percents. It means that the slopes of the σ(ε) 

f 

F1 4

L

2 

H

3

l 

α



Non-linear Stress-strain Relation in Sedimentary Rocks and Its Effect on Seismic Wave Velocity 7

duplicating curves do not differ from one another several percents, i.e. the modulus 
changes are insignificant. 

The important feature of the load-unload technique is the opportunity to separate 
the components of deformation from each other, i.e. elastic component (convertible) 
from microplastic one (irreversible). The sample is loaded by steps (discretely: σ1> σ2> 
σ3>… σmax). The total strain (ε1, ε2, ε3, …) is measured at each step after loading, then 
the loading is removed and residual (microplastic) strain (εµ1, εµ2, εµ3,…) is measured. 
The elastic component εHi is defined as a difference between total εi and residual εµi 
strains (εH1 = ε1 - εµ1 etc). Similar operation is made at unloading (σmax → σ1). Thus, the 
residual strain is known at each step of loading – unloading. 

The object of our study were samples of sandstone, argillite, marl from deposits 
of Western Siberia, Table 1. Measurements were carried out under normal conditions 
on “dry” and water-saturated rocks. The estimation of influence of saturation was made 
qualitatively. Saturation was hygroscopic by vapors of chloride of ammonium. It 
provides formation of an intergrain liquid (Dachnov, 1985). The maximal saturation 
corresponds to the humidity of 79%, while partial saturation corresponded to humidity 
of ~ 20%. Saturation was defined by weighing of a sample. It should be remembered, 
however, that dry samples are not absolutely dry (Zinszner et al., 1997). Before 
measurements, samples have lain for two months during summer time in a box at room 
temperature. 

Table 1. Rock samples used. 

Rock type Number of 
samples 

Depth 
(m) 

Density 
(kg/m3) 

Average 
Young’s modulus 

(GPa) 

Porosity 
(%) 

Sandstone 
Argillite 
Marl 

6 
4 
5 

1200 
2800 
2700 

2.53 
2.65 
2.74 

4 
13 
12.3 

19 
11.5 

2.4 

The initial diagram σ(ε) was obtained for the εmaxI ~ 10-3. Such a relationship σ(ε) 
is often referred to as an equation of state, see, for example Boitnott (1993). Then the 
diagrams were received for lower levels of εmax and compared to the initial diagram. 
Diagrams of the second and third strain levels had the maximal strain approximately 10 
and 100 times lower than the initial one, i.e. εmaxIII < εmaxII < εmaxI. 

3. Results of experiments 

Generally the diagram σ(ε) is close to a linear one for εmaxI ~ 10-3. It shows a be-
havior of rocks for large strains. However, this apparent linearity does not mean linear-
ity for lower strain levels. Nonlinear deviations may not be seen in the small strain re-
gion in large-scale plots. I illustrate it by three examples of marl, argillite, sandstone 
(Figure 2, 3 and 4, respectively). Diagrams σ(ε) for εmaxI ~ 10-3 are shown on Figure 2a, 
3a, 4a. The σ(ε) for εmaxII are shown on Figure 2b, 3b, 4b and Figure 2c, 3c, 4c is for 
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εmaxIII (εmaxI > εmaxII > εmaxIII). The loading is shown by continuous line, and unloading 
by dotted one. The deviation from average of the duplicating curves are insignificant. 
The residual strain after the final unloading (Σεµ) is a total microplastic strain for σmax. 
The energy of microplastic strain ∆Wµ can be calculated as the square of a hysteresis 
loop, and the elastic energy WH is equal to the square of the triangle below the 
hysteresis loop. A total energy is W = WH + ∆Wµ. The value δ = ∆Wµ/W ~ 
εµi(max)/εi(max) defines a microplastic contribution. 

Previously, the “exhausting” of residual strain effect is shown with repeated 
measurements on the same sample (Mashinsky, 1994). The residual strain is not present 
if a stress level in repeated loading does not exceed the initial one. It appears only at 
higher stress levels. The unloading modulus Eun is always higher than loading modulus 
Elo, and this can be explained by microplastic influence. The total strain εI is higher 
during loading due to a microplastic component εµi: Eloi = ∂σi/∂(εi = εHi + εµi). The total 
strain εi at the same stress ∂σi is less during unloading as it consists only of elastic com-
ponent εi = εHi. Therefore, the modulus Euni = ∂σi/∂(εi = εHi) > Eloi. In other words, the 
unloading goes without microplasticity by removal of elastic stress with a higher 
modulus. 

From Figures 2, 3, 4 it is seen that average Young’s moduli of marl, argillite and 
sandstone are not constant on strain level εmaxI, εmaxII, εmaxIII. Namely, transition from 
εmaxI to εmaxII and then εmaxIII results in change of average Young’s modulus. The decre-
ment of the strain leads to the decrement of the modulus from 12.7 to 10.5 GPa in marl 
and from 16.3 to 10.6 GPa in argillite, that is, changes the correspondent moduli by 
17% and 35%, respectively. In sandstone the decrement of the strain leads to the incre-
ment of the modulus from 2.2 to 5.0 GPa, i.e. it results in significant (2-3 times) incre-
ment of Young’s modulus. The value of microplastic contribution δ in marl, argillite 
and sandstone increases with decreasing strain from 0.07 to 0.67; from 0.05 to 0.4 and 
from 0,56 to 0,75, respectively. The microplastic contribution for marl and argillite is 
more pronounced for small strains than for large strains. However, for sandstone the 
microplastic contribution is relatively large for the whole strain range. 

Thus, change of σ(ε) is observed at change of an energy level. The elastic 
modulus (Esti = ∆σi/∆εi) may either increase or decrease, as Figure 5 shows. Young’s 
modulus of marl and argillite increases with stress, while Young’s modulus of sand-
stone decreases with stress. The most significant change of the modulus is observed in 
sandstone. Its nonlinear change is caused by microplasticity. The increment of the 
modulus is accompanied by decrement of δ (e.g. marl and argillite). On the contrary, 
the decrement of modulus is caused by preservation of the large contribution of 
microplasticity or even by grow of δ with stress, as Figure 5 shows. In general, the 
microplasticity influences the behavior of the total strain and, consequently, the 
behavior of modulus. 



Non-linear Stress-strain Relation in Sedimentary Rocks and Its Effect on Seismic Wave Velocity 9

 

 

 

Fig. 2. Diagrams σ(ε) for marl from the depth of 2700m; a - εmaxI, b - εmaxII, c - εmaxIII. A continuous line 
denotes loading, a dotted line denotes unloading. 
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Fig. 3. Diagrams σ(ε) of bitumized argillite, depth 2800m; a - εmaxI, b - εmaxII, c - εmaxIII. A continuous line 
denotes loading, a dotted line denotes unloading. 
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Fig. 4. Diagrams σ(ε) for sandstone from the depth of 1200m; a - εmaxI, b - εmaxII, c - εmaxIII. A continuous 
line denotes loading, a dotted line denotes unloading. 
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Fig. 5. Dependence of the quasi-static Young’s modulus (E) and δ-parameter on stress for marl, argillite 
and sandstone. 

The microplastic strain in rocks grows with a water saturation. Figure 6 presents 
hysteresis loops for dry and saturated sandstone and alevrolite (Mashinskii and 
Zapivalov, 2003). These data was obtained by the same method as in this paper. The 
figure qualitatively compares two diagrams, in which the maximum stresses differ in 8 
times. In the first case (Figure 6a) the σ(ε) is obtained for maximum stress (σmaxI) 
achieving 0.56 MPa (∼ εmaxI). In the second case (Figure 6b) the maximum stress 
(σmaxII) did not exceed 0.07 MPa (∼ εmaxII). The shape of the σ(ε) is different for 
different stress levels. The dry sandstone has a narrow and sharp hysteresis loop, for the 
higher stress level which considerably enlarges with saturation. Dry alevrolite has an 
ellipse-shape loop that becomes a beak-shaped with saturation. Residual strains 
increase with saturation. The changes of the hysteresis loops occur also at smaller level 
and the residual strains are big enough (Figure 6b). The narrow and sharp loop remains 
in dry sandstone, but the overflow disappears. Saturated sandstone as well as dry 
alevrolite shows a sharp hysteresis loop. The strongest nonlinear changes are observed 
in saturated alevrolite at lower stress level. Therefore, for the same rock the character of 
the hysteresis loop is defined by the stress level and the saturation degree. 
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Fig. 6. Hysteresis loops σ(ε) of sandstone and alevrolite in dry (dr) and moist-saturated (sat) condition. 
(a) Stress maximum σmaxI = 0.56 MPa; (b) Stress maximum σmaxII = 0.07 MPa. Arrows: loading – 
unloading. 

It is noticeable that the character of the curvature of σ(ε) influences the sign of the 
modulus - stress relation, that is, increment or reduction of the modulus with stress 
(McCall and Guyer, 1994). Therefore, the dependence of seismic wave velocity on cur-
vature of σ(ε) can be established. It was established, for example, for a dry dolomite 
which shows a positive curvature σ(ε) (Mashinskii, 2002). The compressional wave 
velocity of Madra dolomites was measured under axial stress of 1-60 MPa. Madra 
dolomite shows a positive curvature in the σ(ε) and grow of quasi-static and dynamic 
velocities with increasing stress (Figure 7a). Wave velocity increases with amplitude in 
qualitative conformity with the behaviour of the modulus (Figure 7b). The velocity in-
crement achieved the value of 1.2% for the stress of 5MPa and the strain amplitude 
range used. It is an unusual result which points out the fundamental importance of the 
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stress-strain relations in nonlinear model. Usually the velocity decreases with 
increasing strain amplitude. 
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Fig. 7. (a) Dependence of the static (Est) and dynamic (Edyn) Young’s modulus on axial stress, and the 
strain-stress relation ε(σ); (b) Dependence of compressional velocity (Vp) on axial strain amplitude on 
the different stress in Madra dolomite of 2.4% porosity. 

4. Discussion of results 

The character of the stress-strain relation depends on a energy level. The mi-
croplasticity contributes to the nonlinear change of the σ(ε). The curvature of the σ(ε) 
depends on the contribution of viscoelastic and microplastic components, which, in 
turn, depend on the strain range. Saturation of rock increases the destructive role of mi-
croplasticity. The consolidated rocks may have a so-called “nought” limit of elasticity 
when there is a residual strain, but an elastic strain is absent. This effect was earlier no-
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ticed only in the soft rocks and loose mediums. Microplastic shifts occur on borders of 
grains, cracks etc. The thin water pellicles concentrate in these areas and saturation cre-
ates favorable conditions for microplasticity. 

The dependences of the dynamic modulus (velocity) on the strain amplitude were 
received in laboratory and field experiments (Mashinskii and D`yakov, 1999; 
Mashinskii et al., 1999) where it was shown that the stress-strain curves may have both 
convex and concave shape, while static and dynamic modulus increase with strain for a 
concave curve (argillite) and decrease for convex curve (sandstone). In some previous 
theoretical and experimental works the investigators have taken no notice of that 
(Winkler et al., 1979; Stewart et al., 1983; Tutuncu et al., 1998a,b). They specify only 
reduction of a modulus (velocity) on strain amplitude. However, the theoretical work by 
McCall and Guyer (1994) is in agreement with our data. 

I suppose that the main reason why our data show a new distinctive result is the 
difference in lithology and microstructure of the rock used. The most previous experi-
ments were performed on sandstones (Berea, Navajo, Meule, Fontainebleau, Massilon) 
and rarely on other rocks (limestones, shales, granite). As for dolomite, I have not 
found any experimental data. 

The dependence of seismic wave velocity on the strain amplitude is connected 
with the attenuation process of elastic waves. Consideration of the attenuation mecha-
nisms (Spencer, 1981; Stewart et al., 1983; Johnson et al., 1996; Tutuncu et al., 1998b; 
Xu et al., 1998) shows that these mechanisms do not take into consideration a mi-
croplastic effect. Known mechanisms operate in a presence of a microstructure, 
whereas microplasticity is possible in without-structure solid media (for example, in 
monocrystals of natural quartz) (Mashinskii et al., 2001). The microplasticity causes the 
dependence of seismic velocity on the amplitude of strain so far as a the microplastic 
deformation is the amplitude dependent component. 

Our experiments have confirmed the known fact that the loading and unloading 
moduli are not equal (Johnson et al., 1996; Xu et al., 1998). I explain this by microplas-
tic anelasticity. The present study shows that dynamic relationships σ(ε)d are different 
for various amplitudes of a seismic wave (σmaxi, εmaxi)d at each lithostatic pressure. 
Therefore in real conditions the peculiar dependence σ(ε)d would take place in the cor-
responding static and dynamic range. 

5. The conclusions 

Shortly, conclusions are reduced to the following. 

1. The stress-strain relation is dependent on a strain range and is non-linear. 
There are the non-closed hysteresis loops and the residual strains caused by 
microplasticity. 

2. The water saturation essentially changes σ(ε). 
3. Young’s modulus may increase and decrease with strain. The dependence of 

seismic velocity on the amplitude of strain can be caused by microplastic ane-
lasticity. 
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4. A difference of moduli of loading and unloading is explained by microplastic-
ity. 

5. The non-linearity of σ(ε) and its dependence on strain level should be taken 
into consideration in the elaborated nonlinear theory. 

Therefore, the stress-strain relations received at different strain levels have the 
qualitative and quantitative difference. It is necessary to reconsider the traditional ap-
proach, in which the small-amplitude seismic wave propagation is described by the 
stress-strain relation experimentally obtained for the near source region (e.g. large 
strain). Such a stress-strain relation cannot be applied to the models with small strain 
levels. I suppose that any phenomenological model may not predict a behavior of the 
stress-strain dependence for the given strain level and physical condition, therefore, an 
empirical study of the stress-strain relation in a wide amplitude and frequency ranges is 
necessary. 
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