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Abstract 

The aurora provides us with a powerful tool for studying the near-Earth space. Processes in the 
magnetosphere and the ionosphere shape the visual appearance of the aurora, which itself is caused by 
precipitating particles colliding with atmospheric atoms and molecules. Today's auroral research utilises 
sensitive ground-based all-sky cameras to acquire images of the whole sky. These cameras produce 
millions of images every year, only a fraction of which are used in research due to the required manual 
labour. In this work, we present two important results. First, to answer the question whether a given 
image contains aurora or not, we present a K-nearest-neighbour classifier that agrees with a human 
expert with an accuracy of about 90%. Second, we show that the CONDENSATION algorithm can 
successfully track auroral arcs.  The information of arc location and movements are direct indicators of 
the physical processes taking place in the space environment surrounding our planet. 
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1. Introduction 

The magnetosphere is filled with plasma that comes from both the solar wind and 
the Earth’s atmosphere. The electrons and ions that make up this plasma move around 
within the cavity in complicated motions, sometimes precipitating in the Earth’s upper 
atmosphere. Particles that enter the Earth’s upper atmosphere collide with atmospheric 
atoms and molecules, typically at altitudes between 100 and 500 kilometres. Some of 
the kinetic energy of the precipitating particles is given to the atmospheric particles, 
leaving them in excited states. When the atmospheric particles spontaneously decay to 
lower energy states, they radiate light. The amount of precipitating electrons is 
sufficient to create enough light to be visible to the naked eye; this is the aurora. In the 
northern hemisphere, we call this the aurora borealis, or the northern lights. Contours of 
constant magnetic latitude in the northern polar regions are shown in Figure 1. The 
brightest and most dynamic auroras are usually found poleward of 60° and equatorward 
of 80° magnetic latitude. 
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Though always present, the intensity, location and structure of the aurora is 
virtually ever-changing. Early work in space physics led to the realisation that changes 
in the aurora are directly coupled to dynamics within the magnetosphere and the solar 
wind, and hence that the aurora provides us with a powerful tool for studying the 
plasma environment in near-Earth space. 

Observational studies of the aurora typically involve imaging. Ground-based CCD 
(Charge Coupled Device) cameras are extensively used in auroral studies. Fitted with a 
fish-eye lens, these all-sky cameras (ASC) provide horizon to horizon images of the 
sky. An ASC data set consists of digital images, some examples of which are shown in 
Figure 2. An image may or may not contain aurora. If it does not, it might be because of 
clouds, or a lack of auroral activity within the field of view. Certain auroral forms 
commonly recur; the evolution of these forms allows us to remotely study 
magnetospheric plasma processes.  

Large ASC data sets contain a wealth of scientifically relevant information. The 
size of these data sets, however, presents us with difficulties. A common methodology 
in auroral science is to carry out event studies to explore some specific magnetospheric 
processes. In order to carry out event studies with well defined objectives, relevant 
events must be identified from the data sets. The identification of appropriate events is 
hampered by the laborious task of sifting through large data sets. Statistical studies 
complement event studies, addressing issues related to the generality (or lack thereof) of 
their results. Knudsen et al. (2001) studied the widths of auroral arcs by manual 
classification of large amounts of data. This is time consuming and limits the size of the 
data set utilised. Obviously, intelligent algorithms capable of automatic pattern 
recognition will be of great value in the use of ASC data sets by reducing manual labour 
and overcoming the difficulties caused by subjectivity of the classification. 
Furthermore, they will provide the maximum number of opportunities for the event 
studies. Maximising the use of ASC data sets is our prime motivation in carrying out 
this research effort. 

Ideally, an automatic algorithm – a search engine – would browse through the 
data and search for the required type of aurora thus providing the user information of 
both the auroral occurrence and the visual appearance or shape of the aurora. Statistical 
studies assisted by an automatic auroral arc search engine have already made it possible 
to utilise larger parts of the data set than earlier (Kauristie et al., 2001). However, our 
studies involving the application of search engine techniques to auroral data (Syrjäsuo 
et al., 2000; 2001) have shown that (1) it is possible to coarsely separate images 
containing aurora from those not containing aurora, (2) classification errors are mainly 
caused by moonlit clouds, and (3) construction of a proper training set is not always 
trivial. In pattern recognition, one typically uses a training set of representative data 
samples to determine the classifier parameters. Thus, the quality of classification 
directly depends on the training set. An independent test set is usually utilised to 
evaluate the classifier performance. 

In this study, we focus on automatic classification of auroral image data, and the 
ability of a tracking algorithm to follow auroral arcs in sequences of ASC images. 
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Fig. 1. Map of the northern polar regions, showing contours of constant magnetic latitude. Bright auroral 
emissions occur most commonly at latitudes between 60° and 80° magnetic latitude. The 160° field of 
view (FOV) of the auroral imagers are shown; this FOV discards the lowest 10° degrees of elevation 
angle which provide the least accurate data. The imager arrays are described in section 2. 

 

Fig. 2. Four examples of commonly occurring auroral forms. From left to right, these are: 1) auroral arc; 
2) auroral band (ripples on an auroral arc); 3) an omega band-like distortion of diffuse aurora; 4) 
streamers intruding into the field of view from the north. North is towards the top of the figure. 

2. Data 

There are several ground-based observation programs that involve operation of 
ASCs and other instruments such as photometers, magnetometers, riometers and radars. 
These instrument arrays provide a comprehensive quantitative picture of the impact of 
magnetospheric dynamics on the Earth’s upper atmosphere and hence on the state and 
dynamics of the magnetosphere. Two such programs are MIRACLE (for 
Magnetometers, Ionospheric Radars, and All-sky Cameras Large Experiment) (Syrjäsuo 
et al., 1998) and CANOPUS (for Canadian Auroral Network for the OPEN Program 
Unified Study) (Rostoker et al., 1995). The fields of view of the one CANOPUS and 
eight MIRACLE ASCs are shown in Figure 1. 
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The data used in this study was obtained from the CANOPUS and MIRACLE 
ASC data sets. The ASCs are similar in both networks: a fish-eye lens captures the 
whole sky, narrow bandpass filters are used to choose a scientifically meaningful 
spectral line, and after intensification the image is recorded by a CCD camera (the 
CANOPUS and MIRACLE CCDs are 256 × 256 and 512 × 512 pixel devices, 
respectively). The resulting circular images are 8-bit grey-scale images. On average 
CANOPUS produces about 60000 images annually, whereas the eight MIRACLE 
cameras typically record over five million images every year. The CANOPUS and 
MIRACLE ASCs obtain images through 427.8 nm, 557.7 nm, and 630.0 nm filters. Due 
to CCD and intensifier performance issues and details of the auroral process, the 557.7 
nm images in both data sets show the brightest, clearest and most dynamic structures. 
Almost all auroral all-sky cameras record this spectral line, which makes the presented 
classification technique applicable to other imagers, too. Consequently, we restrict our 
attention to the 557.7 nm data.  

3. Classifying individual images 

3.1 Construction of the training and test sets 

The CANOPUS imager does not operate when the Moon is above horizon, thus 
avoiding the primary source of the classification errors as discussed earlier. A set of 
6900 images from CANOPUS was selected for construction of the training and test sets. 
In random order, an expert human classifier placed each image into one of four classes 
(see Figure 3). By utilising random order, the human expert is forced to ignore the 
temporal context of each image: this approach guarantees independent classification for 
every  image  and  overcomes  a  major  difficulty encountered in Syrjäsuo et al. (2000).  

No aurora Aurora

 

Fig. 3. Classified ASC images: (from left to right) “no aurora”, “arc”, “patchy” and “other”. The top and 
bottom rows are the raw and autoscaled versions. 



 Analysis of Auroral Images: Detection and Tracking 7

One class was no aurora. The other three were distinct, though broad, classes of 
auroras. The training set consisted of 760 “no aurora” images and 760 “aurora” images. 
The latter class was constructed by merging all auroral classes into one superclass. The 
test set consisted of the remaining 5380 images, similarly divided into two classes.  

The background level from each image was determined by averaging the 
brightness in a small subwindow outside the circular projection of the actual image on 
the CCD. The image mean and maximum brightnesses were determined after 
subtracting the background to remove the intensifier and CCD dark current effects. 
These two features are plotted in Fig. 4. Intuitively, if the image is brighter it is more 
likely that the image contains aurora. However, if the maximum brightness is close the 
average brightness there are no distinct features – or auroral shapes – in the image. 

3.2 K-nearest neighbour classifier 

A classifier defines decision boundaries in the feature space (ie. mean vs. 
maximum) which separate different sample classes from each other in the data. By 
examining Figure 4, we can choose to use a linear classifier, in which this boundary is a 
straight line above which all images are classified as aurora and below which they are 
classified as no aurora. Unfortunately, the small nonlinear fluctuations around the 
decision boundary result in poor classification performance. 
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Fig. 4. Mean brightness versus maximum of images containing aurora (left) and those without apparent 
auroral activity (right). 

However, we can use a simple K-nearest neighbour (KNN) classifier (Therrien, 
1989) with better results. In KNN, a training set T is used to determine the class of a 
previously unseen sample X. First, we determine the mean and maximum brightnesses 
for all images in T, and, similarly, for the unseen sample X. Then the Euclidian distance 
in the feature space is used to determine K elements in T closest to X. If most of these K 
nearest neighbours contain aurora, then X is classified as containing aurora – otherwise 
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it is classified as no aurora. This classification scheme clearly defines nonlinear decision 
boundaries and thus improves the performance.  

We found that, with K = 17, the classification of CANOPUS images is ~ 92% 
accurate, which is good enough for most statistical applications. The accuracy was 
determined by comparing the classification of the KNN classifier to that of the human 
expert. Furthermore, the feature distribution suggests that the number of datapoints used 
in the example set T can be considerably reduced for faster processing: only those 
examples that are close to the decision boundary are actually required. 

3.3 Auroral occurrence in Kevo in 1997-98 

Nevanlinna and Pulkkinen (2001) utilised an auroral occurrence index AO for 
studying the visibility of auroras in Finland. The AO index is based on determining the 
relationship between positive (ie. with aurora) and negative auroral (ie. no aurora) 
observations during clear nights. In percentage, 

AO = 100A/(A + C), (1) 

where A is the cumulative duration of auroral light during a given hour and, similarly, C 
is the total time with clear sky and no auroras visible for the same hour.  

Based on our experience with the KNN classifier for CANOPUS, we constructed 
a similar classifier for the station Kevo in MIRACLE chain. Then, we used the classifier 
and cloud information to determine the AO for Kevo for the winter 1997-98. All images 
without the Moon – totalling about 180000 – were selected for analysis; the location of 
the Moon (ie. above or below the horizon) was calculated from the station’s 
geographical coordinates and the date and time of each image. In this case, using a set 
of 4967 images, half of which was used for training and the remaining half for testing, a 
KNN classifier is 93 ± 1% accurate with K = 11 (see Fig. 5). 

The cloud information was obtained separately from synoptic meteorological 
observations. These visual cloud observations are performed at three hour intervals, and 
the cloud cover is given a number between 0/8 and 8/8. In meteorological terms, the sky 
is considered clear if this number is less than or equal to 2/8. Each individual all-sky 
image was associated with the nearest cloud observation in Kevo, and if the sky was 
clear then the image classification was used for constructing the hourly AO by equation 
(1). 

Figure 6 shows the resulting AO together with the average AO obtained manually 
for the years 1973-97 of (Nevanlinna and Pulkkinen, 2001). The offset in the curves 
may be due to differences in solar activity, but it is more likely that there are instrument 
dependencies and methodology differences involved. One real difference is that the AO 
for 1973-97 was determined by using data from several stations whereas the AO for 
1997-98 utilised only one station. Also, the manual study utilised more accurate cloud 
information as the cloud cover was determined from the ASC images. Nevertheless, the 
obtained values lie within the error bounds of the manually performed statistical study 
for the station Kevo (Nevanlinna and Pulkkinen, 2001). The clearly lower values of AO 
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between 08-15 UT are due to unused data: if the Sun is not far below the horizon, the 
refracted sunlight imitates the appearance of aurora and causes misclassification. Thus, 
the images from late morning and early morning were not utilised. One should also note 
that at the latitude of the station Kevo, daylight prevents auroral observations between 
08-12 UT. 
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Fig. 5. The classification error as a function of K in KNN classification – upper and lower bounds are 
shown. The bounds are estimated by classifying all images (lower bound) and using a “leave-one-out”-
technique (upper bound) (Therrien, 1989). 

4. Tracking aurora 

4.1 Motivation and tracker details 

Once the images containing aurora have been found, tracking of aurora makes it 
possible to collect information about auroral shapes automatically. It also allows the 
estimation of process parameters for the visual appearance of aurora by providing 
accurate location information together with their temporal changes. This can be utilised 
in constructing mathematical models for both auroral shapes and their behaviour. 

We used the CONDENSATION tracker introduced by Isard and Blake (1998). This 
stochastic tracker utilises random sampling technique together with a shape and motion 
model for tracking objects in noisy and cluttered scene. We used B-splines (Bartels et 
al., 1987) to represent the arc shape. A visually pleasing arc required six spline control 
points (x- and y-coordinates for each point) resulting in a 12-dimensional parameter 
space. 

To reduce the dimensionality, we utilised Principal Component Analysis (PCA) 
on a set of 746 manually fine-tuned and confirmed arc shapes from MIRACLE data 
(Isard and Blake, 1998). This resulted in a 6-dimensional shape space consisting of 
Euclidean transformations (ie. four parameters for translation, rotation and isotropic 
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scaling) and two shape parameters that can regenerate almost all encountered arc 
shapes. The variation of the shape data is illustrated in Figure 7. 

A simple Brownian motion model was used as the motion model, although the 
arcs usually tend to drift equatorward. The feature, for which a search along curve 
normals was conducted, was a model brightness profile resembling a Gaussian, which is 
justified, according to the statistical study about arc widths by Knudsen et al. (2001). 
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Fig. 6. The mean hourly auroral occurrences obtained manually (circles) and by utilising the classifier 
(dots). It should be noted that the results from classifier utilise images from one station during one year 
whereas the manual study has used data from several stations during two solar cycles. 

4.2 Tracking auroral arcs 

In order to test the tracker, we selected a sequence of 194 MIRACLE images, 
obtained at 20 second intervals. This sequence captures the motion of one well-defined 
auroral arc, though at times there are multiple arcs in the field of view. Even though the 
arc is a nonrigid object and the motion model is almost the simplest possible, the tracker 
performs adequately for MIRACLE data with the nominal 20-second interval and 60-
second interval using only every third image. The latter time interval is the one used in 
CANOPUS. 

Figure 8 shows results from running the tracker for 194 frames (67 for 60-s 
interval). The keogram in the middle part of the figure is a time versus latitude plot. A 
pixel column roughly corresponding the station’s meridian is extracted from each 
image. These columns are concatenated to create an overview plot of the auroral 
activity. Keograms show auroral arcs as thin bright features, and the tracker’s successful 
results produce an a strikingly similar plot. Although only one arc is actually tracked, 
the arc location probability density from CONDENSATION contains information of the 
other arcs as well.  
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5. Summary and discussion 

We have presented a classifier that can separate images containing aurora from 
those not containing aurora with over 90% accuracy by using only two easily calculable 
numeric features. This result is of substantial importance for auroral researchers, as it 
allows automatic classification of huge datasets containing millions of images. The 
results shown in Figure 6 also indicate that simple statistical studies that used to require 
months of manual labour can be performed in days. Moreover, the results appear 
consistent enough for comparison with earlier studies. However, there is a consistent 
offset in the auroral occurrences obtained by manually and automatically. There are 
known differences in instrumentation as the manual study utilised old film-based 
cameras whereas our study used data from CCD-cameras. One possible explanation 
would be in erroneous determination of clear sky: the synoptic cloud observations are 
performed at three hour intervals. It is possible that a cloud front has covered the sky 
soon after the cloud observation, and some of the all-sky images have been erroneously 
classified as clear sky and no aurora. A better solution to synoptic cloud observations 
were to use unfiltered ASC images and look for stars. We are currently developing an 
automatic star detector for this purpose. 

(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)
 

Fig. 7. Reducing shape variability by using PCA. The eigenmodes of the 12-dimensional arc shape sorted 
in decreasing order of eigenvalues: the first two eigenvectors capture approximate 92% of the variance in 
the data set. 

In addition, our experiments indicate that a tracker based on the CONDENSATION 
algorithm can track auroral arcs. The accuracy of the tracker is enough for future use 
such as extracting geographical location of the arc and estimating parameters for a more 
accurate motion model (see e.g. Blake and Isard, 1998). Figure 8 shows the temporal 
evolution of arc location probability from CONDENSATION projected onto north-south 
axis – the probability is presented in grey-scale lighter colour indicating larger 
probability. There is clearly one arc drifting southwards and another one brightening 
and fading away in the middle of the sequence; this indicates the possibility to track 
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multiple arcs simultaneously. However, a more elaborate form of CONDENSATION 
tracker is needed for that purpose, see e.g. MacCormick and Blake (2000). 

Realistically it is not possible to represent all possible auroral shapes that the 
plasma processes in near-Earth space can generate. In this study we have concentrated 
on auroral arcs, but there are a plethora of other shapes as well. The changes between 
the shapes are sometimes discontinuous: either due to too low an imaging rate or a real 
and sudden change in the precipitation pattern. Heap and Hogg (1998) have 
successfully constructed a shape space with wormholes by including forbidden areas in 
shape space. Their approach thus allows sudden shape changes. A similar approach 
could be utilised here: an “archive” of the most common or physically meaningful 
auroral shapes could be collected manually. 

16:13:20 UT 16:45:00 UT 16:53:40 UT

Keogram

Arc location probability
from Condensation
- using 20-s data

- using 60-s data

 

Fig. 8. Results from the tracker: individual images (top row), a time vs. latitude plot generated from the 
images (middle), and the arc location probability density from CONDENSATION projected onto latitude 
(bottom). Lighter colour indicates brighter aurora or more probable arc location. Images are from 
Kilpisjärvi, 1999/10/22 16:07–17:11 UT. 

Our results also indicate that it is possible to develop more sophisticated image 
acquisition routines by utilising “intelligent” imaging methods. These would allow, for 



 Analysis of Auroral Images: Detection and Tracking 13

example, increased temporal resolution whenever the characteristic timescale of auroral 
activity requires it. 

While the KNN classifier can be used for practically all images without the Moon, 
the tracker is more suited for case studies in which the time period is already known. 
However, the tracker can assist in finding drift velocities and accurate geographical 
locations required for, say, mapping ionospheric measurements to magnetosphere. 
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