
Geophysica (1998), 34(3), 93-114 

An Automated Finite Element Mesh Generation and Element Coding 
in 2-D Electromagnetic Inversion 

S.P. Sharma and P. Kaikkonen 
Department of Geophysics, University of Oulu, 

FIN-90570 Oulu, Finland 

(Received: December 1997; Accepted: August 1998) 

Abstract 

An automated mesh generation and element coding in finite element modelling is developed for 
the optimisation of geometrical and physical model parameters of the 2-D structures. The approach is 
based on an automatic reconstruction of the mesh and the element codes for varying geometrical and 
physical parameters of the subsurface during the optimisation process. The efficacy of the approach is 
demonstrated through its application in forward modelling and inversion of the VLF electromagnetic 
data from the simple and complex subsurface structures. 
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1. Introduction 

Mesh generation is an essential part of any numerical approach in which a true 
structure of the domain under research is replaced by the one for which a numerical 
approximation to a partial differential equation can be made and evaluated. For the 
electromagnetic (EM) methods in studying the solid Earth the subsurface structure must 
be discretized into the mesh and the Maxwell’s equations must be solved numerically in 
that mesh. Mesh design for a given model is generally done manually on the basis of 
the a priori knowledge of skin depths in different conductivities of the model. This 
restricts the interpreter to do only forward modelling or at least not more than the trial 
and error inversion, because an advanced inversion is too limited without a possibility 
to do an automatic mesh reconstruction during the inversion process. Several studies 
reported in literature regarding the electromagnetic inversion utilising some of the 
numerical techniques, e.g., the integral equation method (IEM), the finite-difference 
method (FDM) or the finite element method (FEM) for a forward solution have used a 
fixed mesh (e.g., Weidelt, 1975; Jupp and Vozoff, 1977; Oristaglio and Worthington, 
1980; Zhdanov and Varentsov, 1983). Therefore, there has been some sort of limitation 
in the inversion fixing either the geometry or physical parameters of the 
inhomogeneities.  In  such  situations  it  is  difficult to get true and reliable estimates of  
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either parameters. However, the reliable and well working iterative inversions based on 
the FEM, FDM or IEM methods in forward modelling, need the mesh to be 
reconstructed automatically depending on the geometrical and physical parameters of 
the subsurface during the course of the inversion process. 

A finite element model can represent almost an arbitrary complex subsurface. 
Several FEM studies with EM data have been reported since the beginning of the 
1970’s (e.g., Coggon, 1971; Reddy and Rankin, 1973; Rodi, 1976; Kaikkonen, 1977; 
Pridmore et al., 1981; Wannamaker et al., 1987b). However, the amount of inversion 
studies using FEM in forward modelling is rather limited and if FEM is used the mesh 
and coding of the elements have generally been kept fixed during the inversion (e.g., 
Oristaglio and Worthington, 1980). But fixing the mesh geometry and the element 
codes have several significant disadvantages in the inversion procedure. First, 
computing the theoretical responses at many frequencies needs necessarily changes in 
the mesh composition because of the changes in the skin depths. The use of only one 
mesh structure can give inaccurate results due to a too coarse mesh or can waste too 
much CPU time due to an unnecessarily dense mesh. Therefore, the element sizes, i.e., 
the mesh structure, must be changed at the different steps of the inversion. Secondly, 
with the fixed mesh and element codes inversion is difficult and limited and can be 
performed only by optimising the conductivities in different fixed blocks. This can lead 
with hundreds of conductivity values needed in the block-type inversion to a highly 
unstable and ill-conditioned inverse problem. Thirdly, the proper fitting of the field data 
with the computed responses done during the inversion needs necessarily the possibility 
to move the subsurface targets in the mesh. This also means that the fixed mesh 
geometry is a severe limitation in a well working inversion procedure, as for example, 
the precise location of the target is then not possible. 

In modelling of inhomogeneities in a stable and well-conditioned way during the 
optimisation of the model parameters we need an automatic mesh generation and 
element coding. Even though mathematically the automatic mesh generation has been 
during recent years a very popular research topic (e.g., Ho-Le, 1988; George, 1991; 
Shimada and Gossard, 1998), in some parts of computational physics, e.g. in 
electromagnetic inversion there is still a lack of proper approaches of an automatic 
FEM mesh generation and element coding. Travis and Chave (1989) have demonstrated 
the moving finite element method in 2-D MT modelling. However, this approach also 
does not serve directly the purpose needed in inversion. Schnegg (1993) described an 
automatic scheme for 2-D MT modelling based on lower order polynomial fitting. The 
approach discussed by Schnegg (1993) is quite interesting and is able to determine the 
varying thicknesses and resistivities in the columns (blocks) formed by the layered 
structures. 

In the present paper we modify and develop further the well-tested and well-
documented 2-D MT finite element program by Wannamaker et al. (1987a, 1987b) in 
such a way that an automatic mesh and element codes generation is possible. The 
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approach is quite general and can be used in optimisation of specific geometrical bodies 
provided the model is not too complicated, i.e., there are no overlapping bodies in the 
lateral direction. The efficacy of the scheme is demonstrated in forward modelling and 
in inversion of VLF EM data. 

2. Theoretical VLF and VLF-R anomalies 

The VLF method in geophysical applications uses the powerful radio stations, 
which work in the frequency band 15-30 kHz as a source for the primary field. At 
sufficiently large distances from the transmitting antenna the primary field can be 
considered to be a plane wave field. For the conventional VLF method, in which the tilt 
angle and the ellipticity of the magnetic polarisation ellipse are measured, it is 
sufficient to utilise the E-polarisation, in which the electric field is parallel with the 
strike of the geological inhomogeneity in the 2-D case. This means that in the field an 
attempt is made to select a transmitter as closely as possible in line with the geological 
strike. 

The tilt angle, θ, which is the inclination of the major axis of the polarisation 
ellipse, and the ellipticity, e , which is the ratio of the minor to the major axis of the 
ellipse, are calculated by the formulae (Smith and Ward, 1974) 
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tangent of the tilt angle and the ellipticity are good approximations to the ratio of the 
real component of the vertical secondary magnetic field to the horizontal primary 
magnetic field and to the ratio of the quadrature component of the vertical secondary 
magnetic field to the horizontal primary field, respectively (Paterson and Ronka, 1971). 
These quantities are called the real ( = tan θ × 100 %) and imaginary ( = e  × 100 %) 
anomalies, respectively and they are normally expressed in percentage. Real and 
imaginary anomalies are considered in this study. 

A VLF-R measurement deals with the horizontal electric field component and 
orthogonal horizontal magnetic field and it is possible to use both the E- and H-
polarisation. In the present study we used the E-polarisation, where the electric field is 
parallel with the geological strike (the x-direction). The apparent resistivity ρa  [Ωm] 
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and phase angle ϕ [°] computed from horizontal electric field Ex and magnetic field Hy 

are given by the formulae (e.g. Kaikkonen, 1980): 
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where ω  is the angular frequency of the VLF primary field and μ  is the magnetic 
permeability of the subsurface. 

The field component Ex in equations (3) and (4) is obtained by applying the finite 
element technique with the Galerkin process directly to the Maxwell's equations and 
other field components in equations (1) - (4) can be computed from Maxwell's 
equations by numerical differentiation. To solve the forward problem the 
magnetotelluric finite element program of Wannamaker et al. (1987a, 1987b) has been 
used after a slight modification for VLF purposes. For the details of the finite element 
modelling and VLF computation, papers by Kaikkonen (1979, 1980) and Wannamaker 
et al. (1987b) are referred. 

3. The scheme 

In the original program by Wannamaker et al. (1987b) the mesh is constructed 
(discretized) for a given subsurface resistivity structure according to the certain 
parameter values (such as the number of nodes in the y- and z-directions, Δy and Δz 
values and the distribution of the code numbers for the different resistivities) described 
manually by the user in the rather large input file. The user has to decide the proper Δy 
and Δz values, i.e., the inner texture of the mesh and the external mesh size based on 
the calculation of the skin depths with the given frequency and resistivity values. This 
manual operation must be repeated every time when the frequency or subsurface 
resistivities are varying (enough). Of course, this kind of procedure will not work when 
a real inversion will be done. 

Our mesh construction for the EM problems is based on the physics, i.e., on the 
skin effect, of the problem and is free from any manual operation. When changes in the 
model parameters or in the frequency of the EM primary field appear the mesh is 
reconstructed automatically. The skin depth, δ , is the depth of penetration at which the 
electromagnetic field reduces to 1/e of its value at the surface of that medium (provided 
σ ωε>> ) and is given by: 
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where ω , μ  and σ  are the angular frequency in rad, magnetic permeability in Hm-1 
and electrical conductivity in Sm-1, respectively. 

Let us consider a simple dyke-like structure in a homogeneous half-space (Table 
1). An input file needed to compute the forward solution for the model is also shown in 
Table 1. First we compute the skin depths δ1 and δ2 in the host and in the body, 
respectively. Then the body, starting from its left edge, is discretized in the y-direction 
into the elements whose width is 0.25δ2. In this way the width of the rightmost element 
in the body may not have the same size as the other elements of the body. Now, when 
we know the amount of the elements (NEY) for the body we can equalise their width in 
the y-direction by dividing the width WI of the body by NEY. Next we have to 
determine the mesh structure in the host rock. On the both sides of the inhomogeneity 
within four elements, i.e., within about one δ2, the element width is kept the same as 
inside the body and after that it is increased gradually up to the distance of 5δ1 
multiplying the previous value by the factor of 1.5. In order to keep a control over the 
position of the body the width of the leftmost element should vary. Now the structure of 
the mesh and the number of the elements with the proper sizes and locations are 
determined in the y-direction. If the location, width or resistivity of the body or the 
resistivity of the host will change, the structure of the mesh must be changed 
accordingly. If the body is more resistive in comparison to the host then the 
discretization in and around the body is performed according to the host resistivity. 

Table 1. Description of a simple model and the input file needed to compute the forward responses. 

 
Input file: 
7,3 # number of parameters, of frequencies 
1500.,50.,10.,70.,5000.,100.,5000. # Loc, WI, DB, DE, ρ1, ρ2, ρ3 
10000.,20000.,30000. # frequencies 
2,4,3,1 # IDX, NGP, NRES, IVLF 
 
geometrical parameters in meters, resistivities in Ωm, frequency in Hz 
Loc is the y-coordinate of the shallowest left corner of the body 
IDX is the option to compute either TE-mode,TM-mode or both  
NGP is the number of geometrical parameters in the model 
NRES is the number of resistivities in the model 
IVLF is the option to compute VLF responses 

Next the discretization is determined in the z-direction. In order to keep an 
accuracy of the forward solution the mesh structure in the overburden, i.e., from the 
surface to the top of the shallowest body, is kept the same as in the body provided the 
body is the most conducting part in the model. If the overburden is the most conducting 
part in the structure then the discretization is performed according to the overburden 
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resistivity. If the thickness of overburden is so small that we cannot accommodate there 
at least 3 elements according to the skin depth rules then the discretization is reduced 
enough to be able to locate in the overburden that required minimum number (3) of 
elements against each resistivity. That demand is to fit galvanic or geometric 
components of the field (Wannamaker et al., 1987a). The element size in the vertical 
direction in the body is the same as in the lateral direction, i.e., 0.25δ2. However, the 
element size can be a little smaller than 0.25δ2 as the distance from the top to the 
bottom of the body is equalised to keep the element sizes the same in the body. Four 
elements, which means about one δ2, below the body are kept the same size. The host 
elements below one skin depth of the body are enlarged by a factor of 2.0 down to the 
bottom edge of the mesh at the depth of 5δ1. Locating the external boundaries of the 
mesh at the distance of 5δ1 from the nearest conductivity inhomogeneity was found to 
be a large enough distance. The original program code by Wannamaker et al. (1987a, 
1987b) that defines the vertical mesh structure for the air above the Earth surface has 
not been changed. Now all the information to write the element codes according to the 
discretization of the subsurface resistivity structure is available and can be done 
automatically. Figure 1a shows the whole discretized mesh and Fig. 1b presents the part 
of the mesh around the body. 

For a dipping body the discretization process follows mainly the procedure 
described above. As the FEM program by Wannamaker et al. (1987a, 1987b) uses as an 
input a triangle element varying dip angles also in the automatic generation is a rather 
straightforward step. We divide the whole rectangular area (Fig. 2a), which is defined 
by the dipping body, into the elements with the same lateral dimension, i.e., about 
0.25δ2, defined by the skin depth in the body. The vertical dimension of the element 
depends on the dip angle and δ2. If the vertical dimension calculated using the dip angle 
is getting larger than 0.25δ2 then the lateral dimension is reduced properly to avoid too 
large vertical dimensions of the elements. This, of course, increases the CPU-time a 
little, but the accuracy in the solution is guaranteed better. Figure 2b shows the part of 
the mesh for the dipping body. It is important to mention that by equalising (see above) 
the top width of the body we can guarantee that the whole body (also every corner) is 
discretized laterally exactly by the elements with the same size. However, in the corner 
which has the smaller angle at the bottom edge of the body there can be the element 
which differs both laterally and vertically from the other elements of the body, i.e., the 
whole element row and column through that corner are different from the others 
discretized according to the dipping body. 
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Fig. 1. a) Discretized mesh for the single vertical body and b) part of the mesh from around the body 
(thick line). 
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Fig. 2. a) The denser rectangular area defined by the triangles (with symbol 2) which form the dipping 
body and b) the part of the generated mesh around the body (thick line). 
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For the subsurface consisting of two or more inhomogeneities the automatic mesh 
generation can be done in the horizontal direction following the rules given above for a 
single body. However, in the vertical direction the discretization is done based on the 
skin depth of the most conducting target. This way is not the most economical one as it 
is possible that the rather large area is covered by the much too dense mesh, which 
correspondingly increases the CPU-time. However, this slight increase in the CPU-time 
is better than almost intractable difficulties in programming of the vertical 
discretization of really complex multi-body structures. Figures for the three-body model 
are presented later in the section 4.1.3. 

The developed finite element mesh and code generation procedure is nothing else 
but the automatic reconstruction of the subsurface model, which is varying, in every 
new step of the optimisation process. Inversion would be impossible without this kind 
of automatization in the mesh and element code generation if we use FEM as the 
necessary forward modeller. 

4. Results 

4.1  Forward modelling examples 

4.1.1 Single dyke 

Figure 3a shows the model used in this example. Figures 3b, 3c and 3d show the 
parts of the meshes generated automatically for the model presented in Fig. 3a varying 
the resistivity of the body. The figures show how the scheme developed generates 
automatically the coarser meshes for the more resistive bodies (from Fig. 3b to Fig. 3d). 
The program keeps the meshes exactly the same for the resistivities of 50 Ωm and 100 
Ωm in the lateral direction, but the mesh is changed in the vertical direction in the body. 
The reasons are first the demand to include at least three elements per inhomogeneity 
and second the rather thin body of 20 meters in width. The calculated VLF- and VLF-R 
responses are shown in Figs 3e (real anomaly), 3f (imaginary anomaly), 3g (apparent 
resistivity) and 3h (phase). True values of various model parameters shown in Fig 3a  
are given in Table 2 where the body resistivity (ρ2) is varying 10, 50 and 100 Ωm 
respectively. 
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Table 2. Inversion results for the single-dyke model. 

Parameters True value  Search limits Inversion results 

Loc (m) 1500 1450-1550 1500.03 
DB (m) 10 5-30 9.99 
WI (m) 20 5-30 19.89 
DE (m) 70 40-100 69.98 
ρ1  (Ωm) 5000 100-10000 4996.44 
ρ2  (Ωm) 10 1-100 9.94 
ρ3  (Ωm) 250 10-1000 249.73 

Error - - 1.20E-07 

4.1.2 Dipping dyke 

Figure 4a shows the model used in the second example. In this example a 20 m 
thick body located at a depth of 10 m is dipping with an angle 45° in  the host with 
resistivity 5000 Ωm. The body is extending 90 m (DE in Fig 4a) in vertical direction. 
Figures 4b, 4c and 4d show the parts of the meshes generated automatically for the 
dipping model in Fig. 4a varying the resistivity of the body. The figures show how the 
scheme again takes into account the varying resistivity of the body generating the 
denser meshes for the rectangular region formed by the more conducting body (Figs 4b, 
4c and 4d). The computed responses are presented in Figs 4e, 4f, 4g and 4h. 
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Fig. 3. a) Simple vertical dyke model. The part of the generated mesh for that model with b) 10 Ωm, c) 
50 Ωm and d) 100 Ωm resistivity for the dyke. The computed e) real anomaly, f) imaginary anomaly, g) 
apparent resistivity and h) phase. 
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Fig. 3. Continued. 
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Fig. 3. Continued. 
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Fig. 4. a) Dipping dyke model. The part of the generated mesh for that model with b) 10 Ωm, c) 100 Ωm 
and d) 500 Ωm resistivity for the dyke. The computed e) real anomaly, f) imaginary anomaly, g) 
apparent resistivity and h) phase. 
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Fig. 4. Continued. 
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Fig. 4. Continued. 

4.1.3 Three dykes 

The more complicated model for testing our scheme is presented in Fig. 5a. True 
values of the model parameters shown in Fig 5a are given in Table 3 where the body 
resistivities ρ3 and ρ4 are interchanged for two different model computations. Figure 5b 
shows the part of the mesh generated for the model with the most conducting dyke (10 
Ωm) at leftmost in Fig. 5a. Next we changed the resistivities of the dykes so that the 
most conducting body is located in the middle of the more resistive ones. Figure 5c 
shows how the scheme has worked automatically taking into account the changed 
resistivities by constructing the mesh to be denser now inside and around the most 
conducting dyke in the middle. The forward responses for these two cases are shown in 
Figs 5d, 5e, 5f and 5g. 
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Table 3. Inversion results for the three-dyke model. 

Parameters Truevalue  Search limits Inversion results 

Loc (m) 1500 1450-1550 1499.15 
DB1 (m) 10 0-20 11.08 
DB2 (m) 5 0-20 5.95 
DB3 (m) 15 0-30 16.34 
WI1 (m) 20 5-30 21.96 
X1 (m) 300 100-400 302.19 

WI2 (m) 10 5-30 15.52 
X2 (m) 200 100-400 197.55 

WI3 (m) 50 10-80 52.72 
DE1(m) 50 25-100 50.05 
DE2 (m) 60 25-100 59.36 
DE3 (m) 70 25-100 73.18 
ρ1  (Ωm) 5000 100-10000 5028.92 
ρ2  (Ωm) 50 1-200 54.22 
ρ3   (Ωm) 500 10-1000 520.40 
ρ4  (Ωm) 10 1-200 14.78 
ρ5 (Ωm) 100 1-200 106.06 
Error - - 6.32E-05 
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Fig. 5. a) Three-dyke model in forward modelling, b) the part of the mesh generated for the model with 
the most conducting dyke at leftmost, c) the part of the mesh for the most conducting dyke in the middle 
of the mesh and the computed d) real anomaly, e) imaginary anomaly, f) apparent resistivity and g) phase 
for these two models. 
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Fig. 5. Continued. 
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Fig. 5. Continued. 

4.2 Inversion examples 

To study the efficacy of the developed approach of automatic mesh generation 
and element coding in inversion process, we present here two examples, one for a 
simple and another for complex model. All the VLF and VLF-R data sets are jointly 
inverted using very fast simulated annealing (VFSA) global inversion technique. 
During the VFSA global inversion a new mesh is generated automatically for every 
50000 models, i.e., due to 5 VFSA runs each of them consisting of 10000 models. 
Finally, the model parameters obtained after 5 VFSA runs are used to compute the 
mean model (see for details Sen and Stoffa, 1995; Sharma and Kaikkonen, 1998). 

4.2.1 Single-dyke model 

For this case we use the synthetic data generated by the model shown in Fig. 3a. 
We consider the VLF and VLF-R synthetic responses shown in Figs 3e, 3f, 3g and 3h 
corresponding to the resistivity of the body as 10 Ωm. The comparison of the synthetic 
VLF and VLF-R responses with the computed responses for the mean model obtained 
after 5 VFSA runs are shown in Figs 6a, 6b, 6c and 6d. These figures reveal an 
excellent agreement between the observed and computed responses. Table 2 shows the 
numerical values of the mean model parameters, their search limits and true values. 
Table 2 reveals that all the model parameters are resolved very well. 
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Fig. 6. Comparison of the observed responses with the computed responses for the mean model a) real 
anomaly, b) imaginary anomaly, c) apparent resistivity and d) phase, after the joint inversion of VLF and 
VLF-R data sets from a single-dyke model. Note the excellent agreement between the observed and 
computed responses. 

4.2.2  Three-dyke model 

In this case we deal with the synthetic data generated by the model shown in Fig. 
5a with the change that the most conducting dyke is located in the middle. Figures 7a, 
7b, 7c and 7d show the comparison between the observed and computed responses for 
the mean model after the joint inversion of all the VLF and VLF-R data. The figures 
reveal a good agreement between the observed and computed responses. Figures 8a, 8b 
and 8c show the conductivity cross sections for the true model, randomly selected 
initial model and the mean (final) model respectively. The conductivity cross-section 
corresponding to the mean model also shows a good agreement with that due to the true 
model. Table 3 presents the numerical values of the mean model obtained after 
inversion, their true values and search limits used during inversion. 

In spite of the fact that the observed and computed responses are fitted extremely 
well, Table 3 reveals that the resistivity and the thickness associated with the most 
conducting dyke are not resolved properly. This is the problem associated with the 
nonuniqueness in geophysical interpretation. The solution of such ambiguities is not the 
aim of the present paper. For the inversion details we refer to the papers by Sharma and 
Kaikkonen (1998) and Kaikkonen and Sharma (1998). They deal with global inversion 
with VFSA and FEM in forward modelling for different types of synthetic, noisy and 
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field VLF and VLF-R data. The ambiguities associated with VLF and VLF-R data and 
their reduction are also discussed in those papers. 

 

Fig. 7. Comparison of the observed responses with the computed responses for the mean model a) real 
anomaly, b) imaginary anomaly, c) apparent resistivity and d) phase, after the joint inversion of VLF and 
VLF-R data sets from three-dyke model. 

4.3 CPU-time 

The CPU-time needed in the single-dyke inversion example (with the 
approximate mesh size of 40×30 nodes) presented above was 24549 seconds. This 
CPU-time includes the mesh generation, element coding, forward solutions and other 
computations of inversion for all the 50000 models. The CPU-time needed in the 
second inversion example (the three-dyke model with the approximate mesh size of 
120×90 nodes) to evaluate the same number of models was 89767 seconds. The CPU-
times reported above are on the SUN Ultra Enterprise 4000 workstation for a single 
VLF frequency including, however, all VLF and VLF-R responses. Obviously, the 
CPU-time will be larger when more frequencies will be considered. 

5. Conclusions 

The 2-D MT finite element program by Wannamaker et al. (1987a, 1987b) has 
been developed further and modified in such a way that an automatic mesh and element 
code generation is possible. Our automatic mesh construction for the EM problems is 
based on the physics, i.e., on the skin effect, of the problem and is free from any manual  
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Fig. 8. Conductivity cross-sections for a) synthetic model, b) randomly selected initial model and c) 
mean model obtained after 5 VFSA runs. 
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operation. When changes in the model parameters or in the frequency of the EM 
primary field appear, the mesh is reconstructed automatically. The approach is quite 
general. However, the present version of the program cannot handle the structure, 
which consists of the bodies, which are overlapping, in the lateral direction. The 
discretization of the structure with the bodies overlapping in the vertical direction is 
carried out for the whole structure according to the most conducting body and therefore, 
even though working well, cannot be the most economical way for the computing 
resources. The automatic mesh and element code reconstruction is particularly useful, 
important and absolutely necessary in inversion with the FEM forward modelling. 
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