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Abstract

The self-similarity concept for sea temperature was firstly introduced by Kitaigorodskii and Miropolski
(1970). They found that a non-dimensional temperature is only dependent on a non-dimensional vertical
coordinate. In our paper it is shown that also the flux quantities of marine system variables (salinity,
temperature, buoyancy, oxygen, nutrients etc.) have a self-similar vertical structure. The derivation of the
equations for the fluxes allows us to present the fully 3-dimensional problem in the sea by using the
self-similarity concept. The marine system variables mentioned above seem to create self-similar structure in
the sea: we suppose that the currents destroy it, because no self-similarity profiles for currents have been
found.
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1 . Introduction

The dynamics of the marine system is characterized by processes covering a wide range of spatial and
temporal time scales. Nihoul and Djenidi (1987) presented that the marine system can be described by fairly
well-defined "spectral windows" i.e. domains of length scales and time scales associated with identified
phenomena. The transfer of energy between windows is effected by non-linear interactions. The variability
in the sea is described by three main categories: small-scale, marine weather and long-term processes.
The small-scale processes are including microscale, mesialscale and mesoscale processes.

The microscale processes include 3-dimensional turbulence and surface waves. The time scale is from
seconds to minutes. The mesialscale processes are formed by internal waves and by microstructure "bliny"
turbulence. The time scale of these processes is from minutes to hours. The mesoscale processes include
inertial oscillations, which have for example a time scale of 13-14 hours in the Baltic Sea, tides and storm
surges. The marine weather describes diurnal and synoptic variations. These processes have a characteristic
time scale from a day up to some weeks. The long-term processes can be separated to seasonal and global
variations. The seasonal variations are formed by the seasonal changes of the atmospheric motion and the
global variations are characterized by climate change processes.

The marine weather and the seasonal variability form a two-layer vertical structure; a
quasihomogeneous layer with intense turbulence and a stratified layer with intermittent turbulence. The
vertical structure of marine weather and long-term processes is characterized by a so-called self-similarity
profile. It means that a self-similarity structure can be found from measurements of different marine system
variables only if an averaging over small-scale oscillations is carried out.

The background of self-similarity concept comes from nondimensional analysis. A classical scientist as
von Karman has dealt with such an analysis in studies of flows in a pipe. A good review of nondimensional
analysis and self-similarity concept in general has been given by Barrenblatt (1975).
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The self-similarity of an unknown variable (for example temperature T in the pycnocline layer) in a
two-dimensional coordinate system will be described in a non-dimensional form:
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So,

θ  = f(ξ) (3)

where:
Ts(t)- temperature in the upper mixed layer, T(z,t) -temperature profile in the vertical direction, TH

-temperature at the lower boundary of the ocean active layer, which is approximated to be constant, z - the
vertical coordinate, h(t) - the thickness of the upper mixed layer, H - the depth of the ocean active layer,
mime.

In this way a two-dimensional problem becomes as a one-dimensional problem. So, by using the
self-similarity approach we can reduce the dimension number of the problem. The self-similarity in data
analysis means that the data measurements in nondimensional coordinates can be described by a single
curve.

2. The birth and development of self-similarity concept

More than two decades ago Kitaigorodskii and Miropolski (1970) published the first paper, where the
vertical structure of the ocean temperature was solved in terms of the self-similarity concept. By using this
concept they were able to calculate the seasonal variations of the thickness of quasi-homogeneous layer and
of the vertical temperature profile in the seasonal thermocline.

Kitaigorodskii and Miropolski (1970) summarized their new founding in the following way. The depth
of the ocean active layer is about 200-250 m. There is at first the quasihomogeneous upper layer, thickness
of which has a great variability in the function of time. Below the quasihomogenous layer, a thermocline
layer exists, where the temperature falls sharply. According to the abovementioned vertical structure
Kitaigorodskii and Miropolski (1970) concluded: in the upper mixed layer the temperature cannot change
with depth and it is equal to the surface temperature. The vertical water temperature profile in the
thennocline can be described by a nondimensional temperature 0, which only depends on a non-dimensional
vertical coordinate ξ (see equation 4).

Verification of this hypothesis and determination of the function θ=θ(ξ) can be based on measurements
of the temperature profile over a long time interval. An approximate analytical expression for θ(ξ) can be
found by using a method similar to that of Karman and Polhausen in boundary layer theory.

Kitaigorodskii and Miropolski (1970) got:

θ(ξ) = 8/3ξ - 2ξ2 + 1/3ξ4 (4)

They studied the turbulent exchange through the thermocline in two separate cases: firstly, when the
thermocline "locks" the heat flux coming from above. In that case the turbulence in the thermocline is
intermittent from its origin and the principal source of turbulence comes from the breakdown of internal



waves. Secondly, they studied the case, where the heat flux is continuos across the boundary of the upper
mixed layer and the thermocline. By using these two alternatives, different evolution equations forthe
thickness of the upper mixed layer were derived.

Miropolski et al. (1970) found average monthly dimensionless temperature profiles for two ocean
stations "Papa" and "Tango". They concluded that the internal consistency of the universal structures is
mostdistinct in July-September, when the seasonal thermocline is developed. The great scatter of points in
the profile in winter can be explained by the great thickness of the quasi-homogeneous layer and by the weak
seasonal thermocline. Kharkov (1977) developed a parameterization for the two-layer structure of the upper
ocean layer. He proposed a relationship between the homogeneous layer thickness and the thermocline
thickness on the basis of laboratory and observational data on the ocean temperature field. The study by
Kharkov (1977) confirmed the universal nature of the temperature distribution in the upper thermocline.
Kamenkovich and Kharkov (1975) studied the parameterization of the vertical eddy flux during the seasonal
changes of the thermal structure of the ocean. They used a three-layer model which consisted of the upper
homogeneous layer, the seasonal thennocline and the main deep ocean. The model was a one-dimensional
one. Two separate cases were investigated: the mixed layer is increasing (entrainment) and the mixed layer is
decreasing (detrainment). The computations of temperature, turbulent heat fluxes and the thickness of the
upper mixed layer were compared with measurements with promising results. Arsenejev and Felsenbautn
(1977) found a simple polynomial expression for self-similarity:

θ  = 1 – (1-ξ)3 (5)

Reshetova and Chalikov (1977) extended the self-similarity hypothesis for the first time to salinity. They
calculated self-similarity profiles for salinity according to measurements carried out in the Pacific Ocean.
According to Reshetova and Chalikov (1977) the results indicate that the dimensionless salinity and density
have a tendency to group along the universal profile with a variance which is appreciable less than the
characteristic gradient within the entire active ocean layer. However, the results were re-examined later on
and it became out that the scatter of points on the empirical curves was too large. The idea of self-similarity
became doubtful.

Linden (1975) carried out laboratory investigations by using a rectangular tank. There was initially a
two-layer vertical structure in the tank. The upper layer was well-mixed and below it there was a layer with a
constant density gradient. Turbulence was produced in the tank by oscillating a horizontal grid with a stroke.
After several experiments an average, non-dimensional vertical structure for density was found. Linden
(1975) found out that it had a very similar appearance as those structures for temperature calculated by
Kitaigorodskii and Miropolski (1970). Actually, the profile (4), which was found by Kitaigorodskii and
Miropolski (1970), is valid only for the case when the mixed layer is increasing (entrainment). The physical
conditions in the laboratory experiments carried out by Linden (1975) presented not the case of entrainment.
The profile found by him has a resemblance to the new profile (7) found by Tamsalu (1982) and by Mälkki
and Tamsalu (1985) described later in this section.

The physical background of self-similarity has been investigated by several scientists. In 1970s
Barrenblatt (1978) and Turner (1978) made the first studies. Barrenblatt (1978) concluded that in the case
of mixed layer increasing, the thermocline is treated as a quasistationary thermal and diffusion wave.
According to Barrenblatt (1978) and Turner (1978) it is likely that the energy needed to prevail the sharp
gradient below the surface layer in the upper thermocline will be supplied by the breaking of the internal
waves. Zilitinkevich and Rumjantsev (1990) concluded as follows. Effective heat conductivity K in
thermocline is much higher than the molecular conductivity and that K increases when -∂T/∂z increases (not
the well-known inversely dependence of K on -∂T/∂z. The direct dependence between K and -∂T/∂z can be
explained in the following way: The disturbances at the lower boundary of mixed layer generate internal
waves which propagate downwards and therefore transfer kinetic energy downwards. The occurrence of
breaking is more likely when high temperature gradients exist. In this way, turbulence "spots" are generated
i.e. the waves expend a part of their energy for the generation of intermittent turbulence. The theory
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is similar to Turner's (1978) but Zilitinkevich and Runtjantsev (1990) expressed that the role of buoyancy
should also be taken into account, so that the mechanism would work.

Zilitinkevich and Rutnjantsev (1990) and Mironov et. al (1991) pointed out that processing of oceanic
data (Miropolski et al., 1970, Reshetova and Chalikov, 1977) revealed so great scatter of points on the
empirical Curves θ(ξ) that concept of self-similarity of the thermocline became doubtful. Tamsalu (1982),
Mälkki and Tamsalu (1985), by using the measured data of Nõmm (1988), found that the self-similarity
profile strongly depends on the evolution of the mixed layer thickness. There are two different self-similarity
structures: firstly, the case of entrainment when the homogeneous layer is deepening (storm) and secondly,
the case when the mixed layer is decreasing (storm subside). Thus, the similarity function in the thermocline
(more generally in pycnocline) has the following forms:

θ1(ξ) = 1 – (1-ξ)3 (6)

when the mixed layer is increasing

θ2(ξ) = 1 – 4(1-ξ)3 + 3(1-ξ)4 (7)

when the mixed layer is decreasing (see Figure 1).

Fig. 1. Self-similarity structure for buoyancy θ
as a function of ξ. Curve 1 - mixed 1ayer depth
is increasing; curve 2 - mixed layer depth is
decreasing.

In the real situation these two profiles are mixed, so the observations situate between these two curves.
We can suppose that in three-dimensional concept self-similarity of vertical fluxes is of primarily

importance and that a self-similarity profile for vertical fluxes can be found at short time and space scales;
i.e. in the turbulent scale of motion. So, the self-similarity of different marine system variables is only a
product of the flux -self-similarity. On the other hand, self-similarity profiles have not been found for
currents. The role of currents seems to be to destroy self-similarity structure. That's probably why the
self-similarity can be found for marine system variables only if an averaging over the small scale is carried
out. Thus, the destroying effect of currents is smoothed out.

The heat (buoyancy) flux self-similarity concept was proposed by. Leonov and Miropolski (1977) and by
Tamsalu (1982). In terms of traditional self-similarity concept and heat transfer equation Zilitinkevich and
Mironov (1992) studied vertical fluxes through the thermocline. They developed a model of heat transfer in
thermocline from considerations of turbulent energy budget and from expressions for effective heat
conductivity, which is based on dimensional arguments using buoyancy parameter, temperature gradient and
turbulent length scale as governing parameters. This energy balance model is applicable to the mixed layer



deepening as well as for its steady state and collapse. In the next section, a new approach in self-similarity
theory will be shown; the self-similarity profiles for vertical turbulent fluxes are derived.

3. Derivation of self-similarity profile for flux quantities

With the linear version of the equation of state, the buoyancy can be written as follows.
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The equation of continuity has the following form:
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where:

u, v, z are velocity components in x, y and z-directions, b g b=
−
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0
 - buoyancy, Hu’b’I -

x-component of macroturbulence, Hv'b'I - y-component of macroturbulence, Hw'b'I - microturbulence, αT -
constant, ρ0 - mean density, I - penetrative component of solar radiation.

Because the vertical structure of the sea has a clearly formed two-layer system, we write the equations
(8) and (9) in a new coordinate system:
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h1 ≤ z1 ≤ h2 ;  h2 ≤ z2 ≤ H

where:
h1 - sea-level deviation
h2- mixed layer thickness
H - sea depth (thickness of active or seasonal thermocline)
D1 = h2 – h1 ; D2 = H - h2
By using (10) we can write equations (8) and (9) as follows:
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For continuity we have:
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We will solve equation (11) by the split-up method (Marchuk, 1975). In the first-order accuracy in time
ti ≤ t ≤  ti+1/2 we will solve the equation:
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In the second order accuracy in time ti+1/2 ≤ t ≤ ti+1 we will solve equation:
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We can suppose that equation (14) develops self-similarity structure and equation (13) destroys it.
Thus, for determination of the flux structure we will concentrate our interest in to equation (14).

We can write equation (14) for the upper mixed layer and for the pycnocline layer.
For the mixed layer we have:
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For the pycnocline layer we have:
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where T’ is a fluctuation of temperature, S’ is a fluctuation of salinity, βs is a constant, u* is the friction
velocity of wind and m1 is a experimental coefficient (mi=1.06, Niiler and Kraus, 1977). Buoyancy flux qk
will be written by using (17) as follows:
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When the depth of the mixed layer is decreasing, the buoyancy flux between the mixed layer and the
pycnocline becomes to zero and turbulence in the pycnocline layer is formed by breakdown of internal
waves. We propose here that the internal waves in the stratified layer are formed by the dynamics of the
mixed layer:
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The main problem in the approximations (20)-(21) is the nondimensional function Qk(ξk). In the upper
quasihomogeneous layer Q1(ξ1) is a linear function of coordinate (see for example Nifler, 1975).
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The determination of Q2(ξ2) is still an unknown function and thus it is a main topic of this article.
After integration of (15) and (16) in vertical direction (see appendix 1) we get by using (17)-(21)
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g is the attenuation coefficient of solar radiation.
In the calculation of the depth of the mixed layer the equation of turbulent energy has been used in

rather simple forms of the turbulent energy equation has been developed (Garnich and Kitaigorodskii, 1977,
1978; Kitaigorodskii, 1979) where e.g. the effects of the breaking of surface wind waves in the mixed layer
has been taken into account.

By substituting (23) and (A 1.17) and (A 1.23) to (21) we find the following equation for q(ξ):
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where:

φ1(ξ2)=2/3(1-ξ2) + 1/3(1-ξ2)4 if Rb < 0

φ1(ξ2)=1/12ξ2(1-ξ2)4 if Rb ≥ 0

For calculation of the buoyancy bk we get in the second-order accuracy in time:
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Substituting (27) and (28) to (13) and (14) we get the following equation for determination of
buoyancy without the splitting-up method; where the destroying effect of self-similarity by dynamics will be
included:
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Where the traditional way for parameterization of macroturbulent mixing is used:
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where µ is the macroturbulent coefficient.
By the same way it is possible to describe the equations for temperature, salinity and for the ecosystem

components.
Substance equation for ecosystem component ck, for example, has the following form:
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where Gk describes biochemical reactions.
The whole problem will be calculated together with equations of motion, equations of salinity and

temperature, equation of state, equation of continuity and equation of the mixed layer thickness (h2).

4. Conclusions

The 25 years history of self-similarity concept in marine science includes many important milestones.
In the work presented by Kitaigorodskii and Miropolski (1970) the existence of self-similarity of temperature
in the Ocean was shown for the first time. However, some further studies of self-similarity concept showed
that the measured profiles and those ones produced by using the self-similarity concept did not fit too well.
The self-similarity concept became doubtful. The works by Tanisalu (1982) and by Mälkki and Tantsalu
(1985) showed that the self-similarity profiles depend on the time evolution of the upper mixed layer.

In this paper we have derived a self-similarity profile for the vertical fluxes of turbulence. So, by finding
out the self-similarity structure also for the turbulent fluxes, not only for single marine system variables, it
becomes possible to solve the 3-dimensional fields for marine system variables.

Further on, we can suppose that the flux-self-similarity is actually of primarily importance and that the
self-similarity of different marine system variables is only a product of the flux - self-similarity in the
turbulent scale of motion. However, self-similarity structure has not been found for the vertical profiles of
currents. It is most likely that currents destroy the self-similarity structure. This is an explanation why
self-similarity profiles for marine system variables can be found only after averaging over the inertial period.
Thus, the destroying effects of currents will be smoothed out.
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APPENDIX 1

By using the self-similarity structure for buoyancy and for buoyancy flux equation (16) has the
following form, if H is not a function of time t:
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 where q* = qh  if 
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We have the following boundary conditions:

ξ2=0  θ=0  Q=0
(A1.2)

ξ2=1 θ=1 Q = 1 if 
∂
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2 0>

ξ2=0  θ=0  Q=1
(A1.3)

ξ2=1  θ=1 Q = 1 if 
∂
∂
h
t
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0≤

Integrating equation (A.1.1) with respect to ξ2 between the limits 0 and 1 and by using the boundary
conditions (A.1.2) and (A.1.3) we obtain:
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Double-integration (A1.1 ), first from 0 to ξ2, then from 0 to 1, yields:
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where:
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From Mälkki and Tamsalu (1985) we get:

κ1= 0.75 ; κ2 = 0.3 and m2 = 0.6 if  
∂
∂
h
t
2 0>  (A1.8)



κ1 = 0.6; κ2 = 0.2 if  
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t
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0≤  (A1.9)

By using condition (18) and equation (20) for the upper layer
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we have the following equation for bH, h2 and qh if 
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where:

The proportional coefficient αb is still unknown. Let's write Eq. (A1.4) in an other form.
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We got from Krauss (1981) that before and after a storm, during which the temperature decreased
about 4 degrees and the upper mixed layer deepened more that 10 meters, the mean temperature of the

pycnocline layer T
_

2   retained nearly as constant (see Figure 2).

Fig. 2. Temperature and salinity profiles: (1)-before a
storm and (2)-after a storm (from Krauss, 1981).
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It means, that

ab = κ1 (A1.14)

By using (A1.8) and (A1.10) we have in the case that the mixed layer is increasing 
∂
∂
h
t
2 0>



 :

εh = 2/3  εH = 1/3  εq = 1/2 (A1.15)

Substituting (A1.11) to (16) and by using (A1.15) we have the following equation for the determination
of Q:
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After integration of (A1.16) with respect to ξ2, and by using condition (A1.2), we get:

Q(ξ2)=1-2/3(1-ξ)-1/3(1-ξ)4 (Al.17)

In case, when the mixed layer is decreasing, (∂h/∂t ≤ 0 and Rb > 0) we propose that:
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where αq is a coefficient of proportionality.
Then, by using conditions (19) and (A.10), we get the following equations for bH and h2:
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where:
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if ĸ1 = 0.6; ĸ2 = 0.2 (see Mälkki and Tamsalu, 1985) then:

εh = 5/6-5αq;  εH = -1/6  + 5αq (A1.20)

In case of stable stratification and Ri numbers above critical, the principal source of turbulence is the
process of breaking of internal waves. This is called as the locking effect of turbulence. The internal waves
have a small amplitude in the bottom layer. Thus, the changes of the bottom temperature (buoyancy) are
negligible. In the first approximation we take, that:

eH = 0 (A1.21)

Then we have, that:



αq = - 1/30 and εhm = 2/3 (A1.22)

By using (A1.21) and (A1.22) we have the following equation for Q, in the case when the mixed layer
is decreasing:

Q = 12ξ (1-ξ)4 (A1.23)

The distribution of non-dimensional turbulent flux Q is presented in Figure 3 in cases of increasing
(A1.17) and decreasing (A1.23) of the mixed layer depth.

Fig. 3. Self-similarity structure for
buoyancy flux Q as a function of ξ. Curve
1-mixed layer depth is increasing; curve 2 -
mixed layer depth is decreasing.


