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Abstract

Magnetic anomalies of sources with arbitrary two-dimensional boundary surfaces and magnetization
distribution can be calculated using a combinaton of closed form and numerical integration. The surfaces
and the magnetization may be functions of either the horizontal or the vertical coordinate. Layered sources
can be modeled by summation algorithms of homogeneous models, or by using vertical magnetization
polynomes and surface functions of the horizontal coordinate.
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1. Introduction

Calculation of magnetic and gravity anomalies generated by sources having arbitrary
shapes and arbitrary distributions of physical properties is in general a complicated task.
In fact, this problem can only be solved in a closed form for very simple combinations of
geometric and physical parameters.

Of the publications concerning more complicated gravity sources reference should
be made to Murthy et al. (1979) and Guspi (1990), who considered two-dimensional
sources having depth-dependent densities and which were bounded by polygonal surfaces.
Talwani et al. (1960) solved the anomalies of three-dimensional bodies by using a
combination of numerical integration and closed form algorithms for horizontal lamina
with variable density. Murthy et al. (1989) considered anomalies of three-dimensional
sources whose densities vary as quadratic functions of depth and whose cross-sections are
represented by series of polygons.

Algorithms for calculating magnetic anomalies, which are generally more complex
than corresponding gravity anomalies, have been considered for example by Hongisto
(1988) who calculated the anomaly of a dipping prism with linearly varying susceptibility
in the vertical direction. Shuey et al. (1972) gave formulae for calculating the anomalies
due to two-dimensional polygonal bodies whose magnetizations vary linearly both in the
horizontal and vertical directions. The method given by Talwani et al. (1960) for gravity
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modeling is in principle also applicable to magnetic modeling. In three other papers
(Ruotoistenmdiki 1992, 1993 and 1994) I have considered methods for calculating anoma-
lies generated by two- and three-dimensional gravity sources and three-dimensional
magnetic sources using a combination of numerical integration and closed form formulas.
The method can be considered to be a generalization of that given by Talwani et al. (1960).
In this paper I shall present the analogous algorithms for complicated two-dimensional
magnetic sources. The advantage of these algorithms, compared to those of three dimen-
sional sources represented in Ruotoistenmdiki (1993) is that they are much faster. Of course,
the geometry of the sources must then be able to be approximated by two-dimensional
models.

The algorithms given have been derived by applying the symbol mathematical "tool
box" program Derive (Rich et al. 1989). With this program, the algorithms can also be
easily worked up for the numerical calculation programs.

2. Magnetic anomaly of a two-dimensional line double distribution

The formula for the anomaly at point (x,, y,, z. = 0) generated by a two-dimensional
line double source can be integrated from the anomaly of three dimensional double source
element dx dy dz located at point (x, y, z). Coordinates x and y are horizontal, and z is
positive downwards.

The distance from the source point to the calculation point is:

R=V (<2+B2+2Y,

The anomaly formula for the source element can now be expressed in the form (e.g.
Kunaratnam, 1981):

dF(xoy.0) = I(fi + o+ f3+ fa+ fs) de< dB dz, 1)
where:
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where the magnetization is characterized by the parameters:
I = anomalous intensity of magnetization, and

A =Mr+Ng,
A,=Lr+Np,
As=Lq+Mp,
A,=Nr-Mag,
As=Nr-Lp,
L, M, N are the direction cosines of the magnetization, and p, ¢, r the direction cosines
of the unperturbed field.

As in three-dimensional modeling, the effective susceptibility is assumed to be lower
than 0.1 ST so that the magnetostatic interaction in the source can be neglected (see Eskola
etal., 1977, 1980).

Next, we choose the y-axis as being parallel to the strike and integrate Eq. (1) with
respect to y:

lim

PG 0 =] )

[ (+fy+ S+ fat fo) dy | dec dz,
-y

which expands to:
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The anomaly algorithm for a two-dimensional line double source can now be
obtained by integrating Eq. (2) with respect to x and z. This integral has a closed form
solution if the integration limits (i.c. the source boundaries) and the magnetization
distribution are of low degree. Otherwise, the integration must be performed numcrically.

In the following equations the anomalies are calculated to a constant level of z. =
In case of rugged topography the origo must be moved to each calculation point separately
(i.e. all coordinates x,, y,, z are zero and the coordinates of the source points must be
calculated relative to this point).
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3. Horizontally dependent surface and magnetization functions

When the magnetization and the upper and lower surfaces of the source are arbitrary
functions of the x-coordinate we get from Eq. (2):

a0

Fix,0)=] [10)
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where x; and x, are the vertical planes bounding the source, I,(x) is the function defining
the source magnetization, and Sy, (x) and S,(x) are the functions defining the upper and
lower surfaces of the source.

Integrating Eq. (3) with respect to z we get:

X.

F(x,0)= 2] L (i — fam) dx, 4
where:
. A5 Shi +A2 oc
(=12)= - > =~
Jan(i=1,2) &1 o2

In a general case this integral does not have a closed form solution and the integration
must be made numerically.
The anomaly due to a layered model can be obtained from Eq. (4) as:

* m
Fe0)=2] 1, (f,,~f) d, )
x, n=1
where
AS Sn +A2 oc
Sy =————
24 oc?

and 7,(x) is the function defining the horizontal magnetization distribution of the n’th
sub-layer, Sy(x) is the uppermost surface and S,(x) (n>0) is the bottom of the n’th layer.
From Eq. (3) it can be seen that also the direction cosine parameters As and A, can be
defined as arbitrary functions of the x-coordinate.
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4. Horizontally dependent surfaces and vertically dependent magnetization functions

When the surfaces are functions of the horizontal x-coordinate and the intensity of
magnetization is a fifth degree polynome of depth, we first define the magnetization
polynome, which describes the variation of magnetization from zero level:

I(2)=AZ +B'+CZ+ D +Ez+F (6)
Equation (3) can now be written in the form:

X
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from which, after integration with respect to z, we get the anomaly algorithm:

F(x,0)= J oz ~fom) dx, )

where:
foni ((=1,2) = fi; (o + fi + fai + Joi + foids

and:
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with:
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my=—4oc (AAs o~ A, (<" B=o? D+ F)—Ag oc (o> C— E)),
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my=—2BAAso* —2A, < B~ A5C),

mg=—2(4AA, <>—2A,0cC+As (3> B-D)).

Eq. (8) must also be integrated numerically in x-direction.

When the magnetization distribution is dependent on the depth to the upper surface
of a source which may also be folded in the vertical direction, we proceed as described in
Ruotoistenmdiki (1992, 1993 and 1994):

To represent the vertical distribution of magnetization in the folded strata, we first
define the magnetization intensity function I,(z’) between normalized depth values z°,
which describes the magnetization of the strata between the upper (z’ = 0) and the lower
(z’ = 1) surfaces in the nonfolded state:

I,(z) = A’ B 2 C D P B 7 +F ©)

Assuming that during the folding of the strata, the ratio of vertical thicknesses of the
various sub-layers remains constant (the total thickness can be variable) and substituting
the normalized depth values z’, we obtain from Eq. (9) the magnetization function 14(2),
describing the source magnetization at the real depth z:

5 4 3 2
| Z S N L Z5h .| 2Sm y Z=Su ,
Is()=A [—T ] +B [T, +C| | +D 7 | +E 5 +F 10

X X X X X

where T,(x) = S;5(x) - Sy, (x) is the vertical thickness of the source at point x.
Equation (10) can be rearranged in the form:

L) =A"2 +B"Z*+C" 2 +D" 2 +E" 7 + F" an
Z.
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where:

A"=T. A’

B"'=-T,(5A" Sy -B' T

C'=T,(10A’ S,2- 4B’ S, T, + C' T

D'=-T.(10A’S,> - T, (6B’ S,2-3C" S, Ty + D' T.D))

B'=T,(5A" Sy'-T (4B $,° - T, 3C" Sy”- 2D’ S T + E' T,Y)
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and
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T

The magnetic anomaly of the source can now be calculated from Eq. (8) by
substituting the coefficients A through F by A" through F". If S, is negative (or nuil) and
Sy is positive we must substitute the value of S,; by a small positive number after the
coefficients A” through F" have been defined. If S, is also negative, all coefficients must
be set to zero.

In the above equations, the magnetization polynomes may also be of higher degree,
which naturally results in more complicated anomaly formulas.

Itis also possible to define a two-dimensional magnetization function by multiplying
Eq. (8) with a pre-defined function of the x-coordinate. This type of model can be used to
represent e.g. folded sediments, whose magnetization distribution has been modified by
regional metamorphism.

Also in Eq. (7) the direction cosine parameters As and A, can be defined as arbitrary
functions of the x-coordinate. Moreover, also they can be polynomes of z. In such a case
the equations must be re-derived in same manner as described with I, above (resulting to
relative complex equations, however).

5. Vertically dependent surface and magnetization functions

When the surfaces and magnetization are functions of the z-coordinate we obtain
from eq (2):

S Y 4A72 24
o< Z Z
{ 2 3 S \dxdz, (12)

F(x,0)= | Iz -
;'- Z( 1,[1) (oc2+Z2)2 (oc2+22)2 °c2+ZZ

where z, and z, are the horizontal planes bounding the source, I,(z) is the function defining
the magnetization distribution of the source, and S, (z) and S,,(z) are the functions defining
the left and right edges of the source.
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After integration of Eq. (12) with respect to x the anomaly algorithm can be written
in the form:

)
FGo0)=2 [ I, (fuy ~fro) dz (13)
Zl
where:

As S, —A,7—Asgx,
Fui=1,2) =2 A T8 e
(Sei‘xc) +2Z

For a general case, Eq. (13) must be calculated numerically.

Preliminary computations have shown that if the magnetization is a polynome of the
x-coordinate, the algorithms resulting from Eq. (12) are so complicated that it is more
practical to use Eq. (8) or the summation algorithm when calculating anomalies for dipping
layered sources. The advantage of the summation model is that it allows the possibility of
calculating anomalies due to sources that are folded in the x-direction.

The summation algorithm of the layered model can be obtained directly from Eq.

(13):
L m
Foo0=2[ =1, (f,—fi)) dz, (14)
z n=1
where

f(Z) :(AS Sn _AZ Z —‘AS xc)
" (Sn - xc)2 + 22

and I,(z) is the function defining the vertical magnetization distribution of the n’th
sub-layer, Sy(z) is the leftmost edge and S, (z) (n>0) is the rightmost edge of the n’th layer.

6. An example

Figure 1 (a) shows the geometry of a five-layer source and the anomalies calculated
using the multilayer sum algorithm from Eq. (5). The ratio of the vertical thicknesses of
the sub-layers 1-5 (numbered in the figure) is 2:2:3:1:2. The functional form of the
horizontal susceptibility distribution in the separate layers was kept invariant, as shown in
Fig. 2. The amplitudes of the susceptibility function of the layers 1-5 have been multiplied
by the factors 0.5, 2., 1., 3. and 1.5 respectively.
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Fig. 1. The geometry (a) and magnetic anomalies (b) of the layer model. In (a) the outcropping parts of the
source above the erosion level (dashed line) are shown with dotted lines. In (b) the solid line shows the
anomaly of horizontally unhomogeneous source and the dotted line depicts that of the horizontally homo-
geneous source.

The upper and lower surfaces of the strata and the horizontal susceptibility distribu-
tion have been defined by spline interpolation (see e.g. Press et al., 1990) fitted to the
dotted points in figures 1(a) and 2. At x= 19 km the source has been cut by aright-handed
vertical fault. At depth values less than 0.3 km (the dashed line in the figure) the surfaces
have been cut horizontally and the susceptibilities have been set to zero. The magnetic
north is in the direction of the x-axis, and the intensity of the Earth’s field was set at 50000
nT with an inclination of 75 degrees north. The remanence of the source is zero.
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Fig. 2. The horizontal susceptibility distribution along the profile direction of the unhomogeneous layer
model in Fig. 1 (a).

The anomalies were calculated by Simpson’s extended numerical integration algo-
rithm (Press et al. (1990)..The solid line shows the anomaly for a 75 degree inclination
and a variable horizontal susceptibility distribution. The dotted line shows the anomaly
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for a constant horizontal susceptibility distribution (0.015 ST) and a 90 degree inclination
of the Earth’s field.

From Fig. 1 it is apparent that the vertical fault and some of the layers are clearly
indicated in the anomaly. Their form and position are strongly affected by the amount of
inclination and the regional susceptibility distribution.

The calculation time of this model with a 99 MHz 486 PC was less than ten seconds.
Thus, it is apparent that with modern and even faster PC processors and with sophisticated
integration algorithms these two-dimensional models can be calculated in real time (i.e.
within few seconds).

7. Conclusions

The magnetic anomalies of two-dimensional sources with arbitrary boundary sur-
faces and magnetization distribution can be calculated using a combination of closed form
and numerical integration. The algorithms are simple and easy to apply for calculation
programs. The surfaces and the magnetization parameters can be continuous functions,
such as trigonometric functions or polynomes, in the source area, or they can be piecewise
functions such as polygones or spline functions fitted to values defined by the user. The
source types can be, for example, intrusions or sediments having horizontal and/or vertical
magnetization distribution. In layered sources the magnetization can vary continuously or
discontinuously between separate layers. Layered sources can be modeled by summation
algorithms of homogeneous models, or by using vertical magnetization polynomes and
surface functions of the horizontal coordinate.
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