Geophysica (1994), 30, 1-2, 93-105

Lossless Compression of Interpolated and Raw MRL-5 Weather
Radar Data

J. Nappi

University of Turku, Department of Computer Science
Lemminkéisenkatu 14 A, FIN-20520, Turku Finland

(Received: July 1994; Accepted: November 1994)

Abstract

Experimental results of lossless compression of MRL-5 weather radar data used at the Finnish
Meteorological Institute are presented. The data are usually sparse, and can thus be compressed efficiently.
Simple run-length algorithms reduce the required storage usually by more than 80 %. When the run-length
code is compressed with Huffman-coding or arithmetic coding, additional 20 % compression is gained. The
digitization noise and sparseness of the data make further significant compression hard without resorting
to lossy techniques.

1. Introduction

The Finnish Meteorological Institute (FMI) has been operating digital weather radar
network in Finland since 1985 (King, 1989). The radar observation data is compressed
losslessly for archiving purposes. Lossless compression means that the original data are
transformed to a representation requiring less storage space, and the compression can be
reversed (expansion) to produce exactly the original data, without any loss, from the
compressed representation.

To evaluate the compression achieved on a certain (data) file, a suitable measure is
needed. In this article, compression factor is used. It is defined as

_s)

0=
I(t)

where I(s) is the space, expressed in bytes, required to store the original file s, while (7)
is the space required to store the compressed file ¢. For example, if /(s)=57600 (bytes) and
I[(H=5760 (bytes), the compression factor is 8 = 10.

To reduce the amount of backup tape needed, only parts of the original raw radar
observation data have been archived at FML. In this article, compression of three types of
such data files is considered: raw observation data scanned from the lowest radar elevation

94 J. Néppi

angle, height data levels interpolated from the original raw data, and maximum echoes in
vertical direction (FMI has started archiving the complete 3-dimensional reflectivity data
since Summer 1994, due to improvements in the weather radar equipment).

Few compression tests involving weather radar data have been published. For
example, (Puhakka et al., 1979) describes three (combinable) algorithms, and results on
compressing weather radar data using those algorithms. Sometimes weather radar data has
been used to test compression algorithms (Leung et al., 1991). Recently there has been
interest to compare WMO BUFR compression with alternative techniques (Dietrich et al.,
1990) (Newsome, 1992). BUFR is a general format to represent meteorological data. It has
been noted that run-length algorithms and Lempel-Ziv algorithms (section 3) seem to
compress better than BUFR. Furthermore, experiments in routine weather radar operation
at FMI show that high compression factors are achievable with a relatively simple
run-length algorithm (section 3).

Although weather radar data formats vary, the data are commonly quite sparse, and
hence the compression factor is usually high, ranging at FMI on average from 7.0 to 37.0
(King , 1989)(King , 1993). Since compression of satellite and SAR images for example
is usually considerably harder, more effort has been put on that subject (for example (Chen
et al., 1987) (Hadenfeldt et al.,1994) (Chang et al., 1988) (Memon et al., 1994)).

In this article, it is examined how much the compression of the run-length method
used at FMI can be improved, using algorithms with about the same running time (to
maintain the transparency of compression). These algorithms can also be applied to other
kinds of sparse data. In section 2, test data used are described. The algorithms are presented
in section 3, and the compression results are presented in section 4.

2. Test data

The MRL-5 weather radar data files used in the tests were supplied by FMI, and
were selected as follows (the MRL-5 radars are of Soviet construction (King, 1989)). A
number of randomly selected data files were visually examined as two-dimensional images
on terminal. From these, 192 data files were selected so that they included sparse cases
(few or no clouds) as well as more active cases (large clouds or cloud formations filling
the radar observation radius), and cases in between (like in Fig. 1).

There were three types of data files: IPPIN, IC and IHMXN. All contain planar data
in 240*240 pixels, a pixel representing radar reflectivity as eight bits (i.e. a byte). To
simplify the discussion, the term pixel is used to denote a single unit of weather radar data
although such units could also be called echoes, radar reflectivity, or symbols, depending
on the context.

IC-files are collections of 12 height data levels, each level containin g (interpolated)
observation data at a certain height. The lowest height is 500 meters, and the vertical
distance between adjacent levels is 1 kilometer. The levels are generated from the original
raw radar observation data using a 4-point interpolation scheme (Néppi, 1994, p.29) (King,

Lossless Compression of Interpolated and Raw MRL-5 ... 95

1993). The horizontal and vertical distance of adjacent pixels on any level is 2.5 kilometers
(the nominal maximum range of the radars used is 300 kilometers (King, 1989)).

Fig. 1. A weather radar data image.

IHMXN-files relate to a certain IC-file. Each pixel position (x, y) of an IHMXN-file
contains the greatest pixel on any IC-data level in the same position (x, y). So an
THMXN-file contains the maximum echoes of the levels of an IC-file. IPPIN-files contain
original raw observation data, scanned from the lowest radar elevation angle (0.30
degrees).

The radar software (Ericsson Weather Information System) produces the data files
automatically from the original raw radar observation data represented in spherical
coordinates (King, 1989). The pixels which represent radar reflectivity under a specified
threshold value (-30 dBZ) are assigned the default background value 0, as are pixels outside
the range of the radar. The background value will be called background pixel. More details
of the measurement system and the test data can be found in (Ndppi, 1994) and (King,
1989).

The data files were further reduced from the 192 files to 82 files by considering their
order 0 entropy (entropy for short) (Shannon, 1948) (Bell et al., 1990)

255

Ho(f):—Z pilogy pi

i=0

where p; is the occurrence frequency of pixel i in file f. The unit of entropy is bits per pixel.
If several files of the same type (e.g. [HMXN) had about the same entropy (like 0.66 and

96 J. Nippi

0.67 bits per pixel), only one of these files was used. Files with the same entropy tend to
compress similarly, although one can find (theoretical) exceptions.

Entropy of the test files was quite low (Table 1). This is because of the large
proportion of the background pixels in the data files.

The digitization noise of the least significant data bits introduces randomness hard
to predict (Fig. 2). Since the data are also sparse, useful pixel occurrence statistics are hard
to gather. A particular pixel € is difficult to predict accurately using the neighbour pixels,
unless they ar‘e background pixels, in which case € is probably a background pixel.

Table 1. Information on the test files. The average entropy over all test files was 0.76 bits per pixel. p(B) is
the ratio of the amount of the background pixel to the amount of other pixels.

Info THMXN TPPIN IC
amount 10 36 3%12
min. entropy 0.33 0.63 0.00
av. entropy 1.21 1.02 0.37
max. entropy 1.71 1.27 1.40
B 0.84-0.98 0.89-0.95 0.87-1.00
max. pixel 94-160 148-184 0-172

78 43 41 25 65 70
73 56 53 64 65 73
72 44 53 71 72 70
78 78 76 76 70 74
77 38 85 75 73 72
69 57 84 73 72 76

Fig. 2. A 2-dimensional sample of the data THMXN). Small variations in the data make accurate prediction
of a certain pixel difficult.

3. Algorithms

The current method (Sandstroem, 1986) at FMI to compress weather radar data is
based on run-length coding (Reghbati, 1981) (Lu, 1993). The data file is scanned row-wise
and compressed into groups (H,D) with header and data part. The header part H has either
one (H=b,) or two (H=b,b,) bytes (Fig. 3). Two bits in b, indicate the length of the header
(i.e. one or two bytes) as well as the contents of the data part (i.e. run-length group or
uncompressed pixels). The other bits of the header byte(s) indicate the length of the
uncompressed string the group represents. If the data part D is compressed it contains only
one byte: the repeated pixel. Otherwise the data part consists of pixels repeating at most
three times successively. A pixel repeating at least four times is more efficiently com-
pressed using a run-length group. One data group can represent at most 63 (H=b,, 6 length
bits) or 16383 (H=b,b,, 14 length bits) bytes. This algorithm is called rlew.

Lossless Compression of Interpolated and Raw MRL-5 ... 97

76543210 76543210
|length | | | | length |
first byte second byte (optional)

Fig. 3. The group header format used in EWIS (Sandstroem, 1986).

A slightly better compression factor is obtained by using two special esc-pixels,
which may be for example pixels not occurring in the data, or the least frequently occurring
pixels. This is a common compression trick. Normally a pixel € is encoded as itself.
However, n successive repetitions of € are encoded as triplet (esc,n,g). For representing n,
cither one (esc=escg) or two bytes (esc=esc,s) are used. This algorithm is called rI816 .
Two unused pixels were defined as esc-pixels in ri816 .

As an example, consider a number series like 4,4,4,4,4,5,3,6,300x4. Using ri816,
the series is encoded as (escg,5,4),5,3,6,(esc|6,300,4).

Plain Huffman-coding (Abramson, 1963) (Lelewer et al., 1987, 271-274, 278-283)
is not itself suitable for weather radar data compression since every pixel requires at least
one codebit - an original file of 57,600 bytes is compressed to 7,200 bytes at best. Better
results are achieved by using run-length coding first, and compressing the resulting code
with Huffman-coding. Hence two kinds of redundancy are handled: run-length coding
reduces successive repetitions of pixels, while Huffman-coding makes use of the non-uni-
formity of the pixel frequencies. This algorithm is called /0. For the run-length part,
rl816 is used since it produces shorter code than rlew, and since the rlew-code isn’t more
compressible (this was tested separately (Néppi, 1994, p. 41)). Furthermore, 71816 is
simple to implement.

The Huffman-coding part uses the traditional semiadaptive order 0 model (Lelewer
et al., 1987, 271-274). That is, the code is scanned twice: first the pixel weights (the
occurrence counts of the pixels) are computed, and then the data are encoded using the
weights. The code is further compressed by saving the weights in groups (i,j, W), where i
indicates the first and j the last pixel index of the weights in W. So if pixels 4 - 16 and 140
- 254 do not occur in the file, the weights can be encoded into groups (0,3,wy..ws),
(17,139,w17..w39) and (255,255,w,s5). A group may include zero-valued weights, if they
occur at most three times successively.

rla0b-algorithm is similar to rZ40 except that instead of Huffman-coding, arithmetic
coding (Rissanen, 1979) (Witten et al., 1987) is used. An additional enhancement with
respect to rlh0 is to restrict the run-length coding to the background pixel only. The
compression improves since the repeating pixel can be omitted in run-length triplets, and
since there are practically no other repeating pixels than the background pixel. This
enhancement could also be added to rik0, but this way we get more information about

98 J. Nappi

enhancement could also be added to r/h0, but this way we get more information about
combining run-length coding with aftercoding. For example, if r/h0 would likewise omit
the repeating pixel, the resulting compression factor would be between the results of the
original rZh0 and rla0b.

To make use of the evident two-dimensional dependencies between the pixels,
hierarchical image partition methods (like quadtree (Samet, 1984)) were examined (Nappi,
1994, 46-48). Unfortunately regular-formed partition blocks have quite a few background
pixels which tend to reduce the compression factor. Although blocks could further be
encoded using run-length coding, it is then more efficient (with respect to compression
factor and running time) to use run-length coding only, without additional image partition-
ing. Therefore an algorithm similar to method of Howard and Vitter (Howard and Vitter,
1991) was tried.

In this algorithm, repetitions of the background pixel § are run-length encoded as in
ri816. Other symbols X # B are encoded by making a prediction X for X. The prediction
error A =X - X is encoded as described below.

The value of X is predicted using four neighbour pixels of the current pixel context
W = W(A,B,C,D) (Fig. 4). Various prediction methods were considered from the ones in
lossless jpeg to simple perceptron algorithms (Ndppi 1994, Appendix B). Bestresults were
achieved by using a small collection of simple (linear) predictors simultaneously. Each
predictor i has cumulative score counters sy, where j = 1 to 16 refers to a certain prediction
context, based on presence of the background pixel B in W. For example, j=1 is a pixel
context where there is no B, j = 2 is a context where B occurs in position B, and j = 16 is
a context where B occurs in every pixel position of W. Before the coding, all counters s;;

L I I

C/A|D
B| X

Fig. 4. The pixel prediction context ¥ used in pri816. X is the pixel to be encoded.

are initialized to 0.
When coding a pixel X, the current prediction context j is determined. Each predictor

i then makes an estimate and produces a prediction f(i. If the prediction is correct, T=1
points are added to s;;. If the prediction is better than anyone of the other predictors, Y, = 1

points are likewise added to s;;. Other (integer) parameter configurations (Y, Y,) were also

Lossless Compression of Interpolated and Raw MRL-5 ... 99

tried considering various sets of data files, predictors and prediction statistics of the
predictors, but the results were not so good as with the parameters above. It was usually
sufficient to use only two simple predictors (i.e. these consistently got the highest scores),
the other predicting the background pixel B and the other predicting the previous pixel B.
The latter is used primarily inside cloud formations, while the former is used near cloud
borders and pixel contexts containing many background pixels.

The prediction error A=X - X produced by the predictor with highest s;;, is encoded

ijs
by using Laplace distribution

fu,szzw/%_sfexp (——\/?Ix—p, Ij 1)

Here L is O (perfect prediction). The variance of the distribution (82) is determined
by the error statistics gathered from the previous occurrences of W. For example, if the
predictions in a certain context are close to 0, the variance should be small. Poor predictions
increase the variance, raising the coding probability of pixels far away from 0. However,
if there haven’t been enough occurrences for a reliable estimate, search for the error
statistics is repeated by ignoring the least significant bit(s) of pixels in ¥, and considering
the statistics of the pixel contexts found in this way. So approximate context modelling is
used. For further details, see (Howard and Vitter, 1991).

Run-length algorithms compress long runs of the background pixel very efficiently.
On the other hand, there are hardly any other repeating pixels or strings of pixels in the
data. Hence, algorithms based on Ziv-Lempel -methods (Ziv et al., 1977) (Ziv et al., 1978)
rarely performed better than run-length algorithms (Ndppi, 1994, p. 44). gzip, compress,
pkzip and two experimental algorithms (based on Izw- and Iz77-algorithms (Nelson, 1991))
were tested. Only the results of gzip are presented since it performed generally better than
the others. The algorithm of gzip is based on fusion of /z77 and Huffman-coding (as is
pkzip, compress is a [zw-algorithm based on Iz78).

Other algorithms were also considered (Ndppi, 1994, 39-48), but their performance
was (generally) significantly worse than that of the algorithms discussed above. They
included lossless jpeg (version 1.1, freely distributable by Portable Video Research Group
at Stanford) (Wallace, 1991) which had bad compression factor, change of the image
scanning order (generally no advantages), as well as variations of the algorithms discussed
above. Some experiments were also made by using an adaptive order n model (Cleary et
al., 1984) with arithmetic coding, originally developed for text compression. Best results
were usually gained by limiting the highest order to 1 (because of the rapid decrement of
interpixel dependencies as a function of distance). The compression results were about the
same as with the other test algorithms, but the time complexity was unacceptably hjg'h
(about 10 times the others).

The algorithms considered here are listed in Table 2.

100 J. Néppi

Table 2. The compression methods.

Program | Basic method

rlew run-length

ri816 run-length (two esc-pixels)

rlh0 run-length + Huffman-coding

rla0b run-length + arithmetic coding
pri8l6 run-length + approximate 2D coding
gzip 1z77 + Huffman-coding

4. Results

The algorithms (except gzip) were tested in Vax/Vms-environment using a Vax-
4600 computer (32 MIPS), and implemented in Vax-C 3.2. The algorithms were not
particularly optimized for speed (e.g. no analysis of the machine language code) although
inefficient code was removed. gzip (by Free Software Foundation) is a separate, freely
distributable program, tuned for good general performance.

Average compression results for each data file type (described in section 2) are listed
in Table 3. The run-length algorithms rlew and r/816 form one group while the other
algorithms compress about 20 % more. The absolute differences are small, however, so
the advantage of improved compression is noticeable only when compressing vastamounts
of data.

Table 3. Compression results (as compression factor). A file containing only background pixels is com-
pressed from 4 to 14 bytes, except with gzip which used 106 bytes.

Program THMXN IPPIN IC
rlew 7.25 8.08 21.14
ri816 7.42 8.27 21.83
rih0 8.65 9.73 25.84
rla0b 8.90 10.01 26.95
pri816 9.13 9.07 26.18
gzip 8.61 9.51 25.13

Table 4 contains average results for rla0b when compressing IC-data levels. The
compression factor follows the entropy of the levels.

The cpu-time results (Table 5) are averages of 25 compression and expansion
(decompression) runs. The results for gzip are omitted since, at the time of the tests, a
working version of gzip was not available in Vax/Vms-environment (gzip was tested in a
Unix system). However, gzip seemed fast, and anyway comparison with the other
algorithms would not be fair because of the more efficient implementation.

Lossless Compression of Interpolated and Raw MRL-5 ... 101

Table 4. Average compression factor (acf) of various IC-levels when using rlaOb, compared to their average
entropy.

IC-level acf Entropy
level 1 (lowest) 86.40 0.10
level 2 29.84 0.37
level 3 11.21 0.95
level 4 8.39 1.21
level 5 9.64 1.03
level 6 17.96 0.54
level 7 45.63 0.21
level 8 142.90 0.06
level 9 478.67 0.01
level 10 1136.84 0.00
level 11 1710.89 0.00
level 12 2742.86 0.00

Since rlew is the compression algorithm currently in use at FMI, it is used as a
reference method (Fig. 5). All the other algorithms compress better, although note that
rlew is somewhat more error-tolerant (errors in data groups need not accumulate since the
length of a run-length group is known). The complicated compression requires more
cpu-time than with the other algorithms (pri816 as an exception), but the expansion is fast
due to its simplicity. More efficient implementation might increase the compression speed
close to that of ri816. rl816 compresses slightly better than rlew because of the more
efficient coding of the background pixel. Compression and expansion of rI816 are very
similar and take about the same time.

Table 5. Average cpu-time usage (compression/expansion) in kilobytes/second.

Program THMXN IPPIN IC

rlew 1450/2950 | 1500/2800 | 1550/2950
ri816 3300/2800 | 3300/2800 | 35002950
rIhO 1950/1900 | 1950/1900 | 2700/2450
rla0b 1600/1100 | 1750/1200 | 2450/1950
pri8lé 500/450 600/500 1100/1050

The other test algorithms have better compression factor because of the additional
encoding of the run-length code. However, being more complex they take more time.

The Huffman-coding used in rfk0 is reputedly fast. Expansion of Huffman-code is
simpler than compression, but the compression and expansion take still about the same
time. This is because the run-length code to be compressed is so short.

102 J. Néppi

1,3

1,2

1,1

0,9

rlew 816 rh0 rlatb prig16 gzip

Fig. 5. Relative compression factor with respect to rlew. Relative factors for THMXN, IPPIN and IC are
presented.

rla0b compresses better than rlh0 because of the arithmetic coding. However,
arithmetic coding demands more cpu-time when compared to Huffman-coding. Also, if
other pixels than the background pixel are encoded in the run-length part (like in rZk0),
the absolute difference to »7h0 is only few dozens of bytes at most. So compression of the
run-length code with Huffman-coding or arithmetic coding leads to similar results. Faster
multiplication-free implementations of arithmetic coding (Rissanen et al , 1989) (Chevion
et al , 1991) would evidently reduce the compression factor difference between r7h0 and
rla0b even further.

pri8l6 is a highly experimental algorithm. The added complexity requires more
cpu-time than with the other algorithms. However, some potential is evident. Fer example,
sparse data files (less than 200 observations) compress well: since the (often singular)
pixels are close to the background pixel, Laplace distribution gives them good prob-
abilities. pri816 was the only algorithm to make use of the two-dimensional dependencies
between pixels. Unfortunately the data are often so sparse that it is hard to collect useful
coding statistics. More sophisticated error modelling (Howard and Vitter, 1992) and
adjustment of the coding parameters might improve the compression.

Since there are hardly any repeating strings (other than strings of the background
pixel) in weather radar data, gzip works almost like r/40. However, because gzip has to
"learn" the run-length algorithm, and because of the more complex coding format of 8zip,
rlh0 usually has a bigger compression factor. The simplicity of run-length coding makes
rlh0 also faster (at least theoretically), and simpler to implement. Adjustments like
preloading the dictionary with common data strings might increase the usefulness of
Ziv-Lempel methods, although it is questionable if the implementation is worth the effort.
An explicit form of run-length coding should probably be included in Ziv-Lempel
implementations.

Lossless Compression of Interpolated and Raw MRL-5 ... 103

THMXN-files are harder to compress than the other files since they contain the least
number of background pixels. IC-files contain lots of background pixels and are thus most
compressible. IPPIN-files contain a great proportion of the echoes of an observation
volume, and can be compressed only marginally better than IHMXN-files. Thus the
amount of the background pixel seems to influence the compression most. However,
pri816 compressed THMXN-files slightly better than IPPIN-files. The reasons for this
might be that IHMXN-files contain sithilar echoes with respect to those in IPPIN-files,
there are more echoes to be used in coding statistics, and the difference between adjacent
echo values (pixels) is not as high as with IPPIN-files. However, definite conclusions
cannot be given due to small data sample set.

5. Discussion

The results were somewhat expected. Long runs of the background pixel can be most
efficiently compressed by using run-length coding while the other pixels are best com-
pressed with arithmetic coding. Because of the low interpixel dependencies, semiadaptive
coding is more useful than adaptive coding, i.e. it is usually better to determine the accurate
pixel frequencies beforehand, rather than during the actual coding.

The best overall compression was achieved by using rla0b. However, rlh0 is faster
and its compression factor is only slightly worse, while it is simpler to implement. The use
of rla0b and rlh0 improves compression generally at least 20 % when compared to ewis.
By making some adjustments, the compression ¢an be improved even further. Forexample,
the repetition count # in run-length triplets (esc,n,€) can be encoded more efficiently by
using statistics gathered from previous occurrences of the triplets. Simply predicting the
previous » and encoding the prediction error (using for example normal distribution) can
improve the compression even dozens of bytes. Also note that since run-length triplets
probably occur close to the position of a similar triplet in the previous row, the occurrence
probability of esc-pixel in a certain row depends from the previous row(s). However, all
these improvements also increase the execution time, as well as complicate the implemen-
tation.

In general, additional compression is possible for example through more efficient
use of two-dimensional dependencies and adjustment of the coding probabilities. Pixel
coding contexts (cloud area, borders, background) could be used more efficiently. How-
ever, lossy compression seems to be the only way to gain significant improvements. In
lossy compression, information not needed is discarded so that the expanded file no longer
exactly matches the original uncompressed file. It is probably better to use specific rather
than general methods like (lossy) jpeg (Wallace, 1991), which can lose important
information. This requires analysis of the observation data and its uses, as well as analysis
of the noise introduced by the radar equipment, to find redundancies. For example, if we
were not interested in small changes in the data, the pixels could be represented with fewer

104 J. Néppi

bits (Table 6). Then the data would be more stabilized and more compressible. On the
other hand, very specific algorithms may not be generally applicable anymore.
Table 6. Left column shows the amount of bits used to represent a pixel while the figures indicate the

corresponding compression ratio of rla0b. Some redundancy is present since the coding algorithm wasn’t
modified to make use of the reduced pixel set. See Table 3 for eight bit results.

Bits THMXN IPPIN IC

7 9.83 10.85 28.82

6 13.74 12.30 33.00
16.61 14.33 39.68

Other factors than compression ratio should also be considered. Simple run-length
algorithms are fast, and easy to implement. The compression factor is quite good. On the
other hand, more advanced algorithms are usually slower, and tougher to implement, while
the improvement in compression ratio is often marginal. Furthermore, general algorithms
do not necessarily make use of the high amount of the background pixel present in weather
radar data. Error detection and correction as well as compatible data format are also
important in certain applications.

6. References

Abramson, N., 1963: Information Theory and Coding, McGraw-Hill, 77-81, USA.

Bell, T.C., Cleary, J.G. and Witten, LH., 1990: Text Compression. Prentice Hall Advanced
Reference Series, 47-48, USA.

Chang, C.Y. and Kwock, R., 1988: Spatial compression of Seasat SAR imagery. IEEE Transactions
on Geoscience and Remote Sensing 26, 5, 673-685.

Chen, T.M., Staelin, D.H. and Arps, R.B., 1987: Information content analysis of Landsat image
data for compression. JEEE Transactions on Geoscience and Remote Sensing 25,4, 499-501.

Chevion, D., Kamnin, E.D. and Walach, E., 1991: High efficiency, multiplication free approximation
of arithmetic coding. Proceedings of Data Compression Conference, April 8-11, Snowbird,
Utah, IEEE Computer Society Press, 43-52.

Cleary, J.G. and Witten, H.W., 1984: Data compression using adaptive coding and partial string
matching. IEEE Transactions on Communications 32, 4, 396-402.

Dietrich, E., Leonardi, R.M. and Sorani, R., 1990: BUFR code and data compression. Contribution
to WG 1 - Telecommunications: Working document 73/wd/173, November.

Hadenfeldt, A.C. and Sayood, K., 1994: Compression of color-mapped images. IEEE Transactions
on Geoscience and Remote Sensing 32, 3, 534-541.

Howard, P.G. and Vitter, J.S., 1991: New methods for lossless image compression using arithmetic
coding. Proceedings of Data Compression Conference, April 8-11, Snowbird, Utah, IEEE
Computer Society Press, 257-266. ‘

Howard, P.G. and Vitter, J.S., 1992: Error modelling for hierarchical lossless image compression.
Proceedings of Data Compression Conference, March 24-27, Snowbird, Utah, JEEE Com-
puter Society Press, 269-278.

Lossless Compression of Interpolated and Raw MRL-5 ... 105

Howard, P.G. and Vitter, J.S., 1992: Error modelling for hierarchical lossless image compression.
Proceedings of Data Compression Conference, March 24-27, Snowbird, Utah, IEEE Com-
puter Society Press, 269-278.

King, R.H., 1989: Operational experiences with the Finnish weather radar network. Weather Radar
Networking, seminar on COST Project 73, September 5-8 Brussels, Kiuwer Academic
Publishers, 91-100.

King, R.H., 1993: Personal communications at FMI during 1993.

Lelewer, D.A. and Hirschberg, D.S., 1987: Data compression. ACM Computing Surveys 19, 3,
261-296.

Leung, W-H.and Skiena, S.S., 1991: Inducing codes from examples (extended abstract). Proceed-
ings of Data Compression Conference, April 8-11, Snowbird, Utah, IEEE Computer Society
Press, 267-276.

Lu, G., 1993: Advances in digital image compression techniques. Computer Communications 16,
4,202-214.

Memon, N.D., Sayood, K. and Magliveras, S.S., 1994: Lossless compression of multispectral
image data. IEEE Transactions on Geoscience and Remote Sensing 32, 2, 282-289.

Nelson, M., 1991: The Data Compression Book. Prentice Hall, USA, 233-309.

Newsome, D.H. (ed.), 1992: Weather Radar Networking. COST Project 73, Final Report, Kluwer
Academic Publishers, 95-99.

Nippi, J., 1994: Sadtutkahavaintojen tiivistys. Master’s Thesis, University of Helsinki, Department
of Computer Science.

Puhakka, T.M. and Sarvi, A.A., 1979: On the compression of digital radar data. Geophysica 16, 1,
81-96.

Reghbati, H.K., 1981: An overview of data compression techniques. Computer 14, 4, 71-75.

Rissanen, J., Langdon Jr., G.G., 1979: Arithmetic coding. IBM Journal of Research and Develop-
ment 23,2, 149-162.

Rissanen, J., Mohiuddin, K.M., 1989: A multiplication-free multialphabet arithmetic code. IEEE
Transactions on Communications 37,2, 93-98.

Samet, H., 1984: The quadtree and related hierarchical data structures. Computing Surveys 16, 2,
187-260.

Sandstroem, M., 1986: Ericsson Radio Systems, EWIS document HL/Sir: Compression format.
Sheets 2-3.

Shannon, C.E., 1948: A mathematical theory of communication. Bell System Technical Journal 28,
379-423.

Wallace, G.K., 1991: The JPEG still picture compression standard. Communications of the ACM
34, 4,31-44.

Witten, L.H., Radford, M.N. and Cleary, J.G., 1987: Arithmetic coding for data compression.
Communications of the ACM 30, 6, 520-540.

Ziv, J. and Lempel, A., 1977: A universal algorithm for sequential data compression. /EEE
Transactions on Information Theory 1T-23, 3, 337-343.

Ziv, J. and Lempel, A., 1978: Compression of individual sequences via variable-rate coding. ZEEE
Transactions on Information Theory IT-24, 5, 530-536.

