137

550.83
537.87

ITERATIVE SOLUTION OF THE ELECTRODYNAMICAL
INVERSION PROBLEM FOR VERTICALLY VARYING EARTH

by

D.O. Riska and H.J. VIDBERG

Department of Physics
University of Helsinki
00170 Helsinki 17, Finland

and

Institute of Physics
Outokumpu Oy
02201 Espoo 20, Finland

Abstract

An iterative method for solving the one-dimensional electrodynamical
inversion problem of determining the conductivity and permeability of
vertically varying earth from the surface reflection coefficient is developed.
The method is a generalization of the Jost-Kohn method for inverting the
Born series for the phase shift in quantum scattering theory. The convergence
of the method is illustrated with an analytically solvable example. The con-
vergence problem associated with the sharp surface boundary is circum-
vented by treating the surface discontinuity exactly.

1. Introduction

The electrodynamical geophysical inversion problem of determining the con-
ductivity and permeability parameters of subterranean strata from surface ref-
lection data is of formidable complexity even in the simplest case of vertically
varying strata with no horizontal variation. For this case the inversion problem
may in principle be solved by the methods developed by JAULENT (1976) and
JAULENT and JEAN (1972) if the initial electromagnetic field is a vertical plane
wave. The method of Jaulent and Jean is a generalization of the inverse scattering
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methods of GEL'FAND and LEvITAN (1951) and AGraNOVICH and MARCHENKO
(1964) to the case of linearly frequency dependent potentials and requires solution
of a set of coupled integral and differential equations. Because of the complexity
of the Jaulent-Jean equations and the lack of practical algorithms for their solution
we shall here develop an alternative simpler but iterative method for solving the
geophysical inversion problem. This method is a generalization of the method of
JosT and KoHN (1952) for determining the scattering potential from the phase
shift in quantum scattering theory by iterative inversion of the Born series for the
phase shift. The method proposed should be far more convenient to use in practical
geophysical sounding work than solution of the Jaulent-Jean equations as it only
involves quadrature of measured quantities.

The one-dimensional geophysical inversion problem is considerably more com-
plicated than the corresponding inverse scattering problem in quantum theory
because of the important role of attenuation which appears as an absorptive
linearly frequency dependent potential. While this complexity is reflected in the
Jaulent integral equation formulation (Riska, 1981) it does not complicate the
form of the Born series for the reflection coefficient in an essential way. The
only problem associated with employment of iterative inversion of the Born series
may be slow convergence or lack of convergence as in the case of scattering from
discontinuous strata or sharp boundaries (PROSSER, 1976). Such discontinuities
may appear in the geophysical case for example at the surface of the earth which
may represent a discontinuous step in the conductivity and permeability parameters.
To achieve convergence of the iterative method one in such cases has to treat the
surface discontinuity exactly and develop the Born series around the solution of
the exactly solved discontinuity problem.

The presently developed method of solving the geophysical electrodynamical
inversion problem should be simple to use in practice as it reduces the problem
to quadrature. The ultimate value of the method will however depend on the rate
of convergence in the topmost layers. The method solves a more general problem
than the approximative integral equation method previously developed by
WEIDELT (1972) in which the displacement current term in the wave equation
is neglected. That term has of course to be taken into account if any information
at all is sought on the permeability or permittivity distributions. While neglecting
the displacement current term is a common approximation in low frequency geo-
physical sounding work it cannot be dropped in the solution of the inverse
scattering problem which involves the high frequency behaviour of the reflection
coefficient as well as the low frequency behaviour.

This paper falls into 5 sections. In section 2 we formulate the inverse scattering
problem for electromagnetic sounding. In section 3 we develop the iterative method
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for solving the problem in general. This method is illustrated with an analytically
solvable example in Appendix 1. In section 4 we develop the model potential method
for the case in which the surface discontinuity is treated exactly. A set of explicit
formulae for use with the model potential method is given in Appendix 2. Finally
section 5 contains a concluding discussion.

2. The one-dimensional inversion problem

An electromagnetic plane wave with harmonic time dependence propagating
vertically downwards (Fig. 1) satisfies the wave equation
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Fig. 1. Plane electromagnetic wave reflected from vertically
layered earth.
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Below ground (z > 0) y' and €’ represent the relative magnetic and dielectric
permeabilities and ¢ the conductivity. Above ground € =u=1land 0=0.In
(2.1) ¢ is the velocity of light in vacuum and w the angular frequency. The
equation (2.1) may be reduced to standard Sturm-Liouville form by the Liouville
transform (JAULENT (1976)):

X = B(Z)J?dz"\/e EHE)+0(—2)z,
0

) = (ﬁf})”“fz(x).

2.2)

Setting k = wjfc the transform (2.2) yields for y the Sturm-Liouville equation

dZ

dTJ; + k2 = Vx, B)]y =0, (2.3)
with

Vix, k) = U + ikQ ). 2.4)

The real and imaginary components of the potential are

_(Hx)\ V4 d* (€@x) |\
o) = (6,(x) ) dx? (u’(x)) ’ (2.52)
06y == cecole(x) : (2.5b)

The equation (2.3) differs from the common Sturm-Liouville equation in
scattering theory by the complex eigenvalue dependent interaction (2.4).

The inversion problem consists of determining the potential V(x, k) from the
surface reflection coefficient for the eleciric field £ and subsequent determination
of the ratios ofe’ and €'/u’ from the potential V. If either €' or 4’ is known the
potential ¥ determines the conductivity profile and the unknown permeability
quantity uniquely. On the other hand JAULENT (1976) has demonstrated that
the surface reflection coefficient cannot determine both potential components
U and V uniquely without additional assumptions. Sufficient additional assump-
tions would be to assume the presence of a perfectly reflecting layer at given
depth d and to give the integrated value of the attenuating potential Q(x). These
parameters then characterize the solution. As we shall demonstrate below the
parameter choices simply represent the method of extrapolating the reflection
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coefficient into the unmeasurable high frequency region. We shall therefore
develop the inversion method with the assumption of the presence of a deep
perfectly reflecting layer. The practical utility of the inversion solution will
depend on to what extent the solution in the topmost region remains insensitive
to the depth parameter d or equivalently the method of high frequency extra-
polation.

3. Iterative solution of the inversion problem

We consider reflection of a plane wave electric (or magnetic) field y (2.2)
from vertically varying earth with the assumption of the presence of a perfectly
reflecting layer at depth x = d as illustrated in Fig. 2. The surface is taken to be
at x = 0. Following JAULENT (1976) we consider the pair of differential equations
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Fig. 2. Reflection from the surface in the presence of a perfectly
reflecting surface at given depth.
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with
Vi, k) = U) * ikQ(x). (3.2)

The auxiliary wave equation (3.1) with the potential ¥~ does not describe a
physical scattering situation and is introduced solely for convenience.

We introduce a pair of fundamental (»Jost») solutions r i(x, k) to eas. (3.1)
with the asymptotic behaviour

e, B— etk (3.3)
These functions satisfy the integral equation (Riska (1981))
. x . _ !
Aok = v + [’ ﬂ“—k%—ﬁ Vi ) FE k) (3.4)

in the half space x < d.

The functions f*(x, k) and f"(x, —k) then form a pair of linearly independent
solution to the eq. (3.1) with the potential V*(x, k). With the help of this pair
we can construct a solution Y(x, k) with the boundary conditions relevant to the
physical scattering situation as

U, k) =1 (x, —k) + s(k) (%, k). (3.5

Here s(k) is the measurable surface reflection coefficient. Note that in the present
case the fundamental solutions attain their asymptotic behaviour (3.3) already at
the surface. The reflection coefficient s can therefore be calculated from the
electric field at the surface if the primary field is known. Otherwise it may be
calculated from the ratio of electric and magnetic fields at the surface by the
relation

1+sk) 1Ez=0k)

1 —s(k) cB@=0,k)" (3.6)
The presence of the perfectly reflecting boundary at x =d demands that

Vv(d, k) =0, 3.7
and thus £k

s(k) =——J%§’I)). (3.8)

From this relation and the properties of the fundamental solutions it is readily -
seen that
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$*(k) = s(—k), (3.9)

a relation that defines the extrapolation to negative frequencies (w = ck) for the
reflection coefficient. The limit behaviour for the reflection coefficient at low
frequencies is

lim s(k) = -1, (3.10)
k-0

and in the case of smooth potential functions at high frequencies (Riska (1981))

d
ezikd+f dx'0 ")

lim (k) = — (3.11)

In order to obtain a convenient integral expression for the reflection coefficient

we, following Jost and KouN (1952), consider the solution £(x, k) to eq. (3.1)

that has trigonometric asymptotic behaviour and which is defined by the integral
equation

d
E(x, k) =sink(x—d) + [dx'g(x,x") V'(x, k) £(x, k) (3.12)
with the kernel

glx,x") = i [sink(x +x'—2d) + sink|x —x']. (3.13)

By taking the limit x >—eoin eq. (3.12) one finds the asymptotic behaviour

§(x, k) ——sink(x—d) + 7(k)cosk(x—d), (3.14)

X -o

where the coefficient 7 (k) is given as
d . '
7(k) = fdx'%ﬁ Ve R ECE ). (3.15)

The relation between this coefficient 7(k) and the physical reflection coefficient
s(k) may be- obtained by comparison of eqs. (3.5) and (3.14):

ea 1—it(k
— _p2ikd
s(k) = =™ (3.16)
or .
e 25k +1

7(k) = ie'z"kds(k)— =

(3.17)
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The solution to the inversion problem — i.e. the determination of the potential
V*(x, k) from the reflection coefficient s(k) may now be obtained by means of
iterative solution of the integral equation (3.12) and substitution into eq. (3.15).

Iterative solution of (3.12) and subsequent substitution into (3.15) gives the
relation

7(k) = % Fdxsin2k(x—d) V*(x, k)
%i jdxjdx Idx sink(x—d) V*(x, k) (3.18)

gl x YV (x,, k) gley, x,).. 80, _ 1 %,) V(% K)sink(x,,— d).

While this expansion is more complicated than the one originally considered by
JosT and KoHN (1952) because of the k-dependent nature of the potential it
may be inverted by the same method.

One writes formally

T(k) = uF(k) (3.19)
Vi, k) = zw: U™V, (x, k). (3.20)
m=1

Substitution of (3.19) and (3.20) into (3.18) and equation of the coefficients of
equal powers of u on both sides of the resulting equations and finally letting u
approach 1 gives

(k) = fdx sin?k(x—d) V,(x, k), (3.21)

1
k.
and
d
= [ desin®>k(x—d) V,,,(x, k)
. (3.22)
+ Z > jdx1 A G (o X X K) V,, (50K, Gy K.
=2 Zy=m=
The kernel in the last integral is defined as

Gy, x g, X k) = sink (e, —d) g(xy,x,) ... g(x;_y, %) sink (x,— d). (3.23)

The potential component ¥, is obtained by inverting eq. (3.21) and the higher
term V,,, by successive inversion of the equation (3.22). Finally the complete
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potential ¥*(x, k) is calculated from the expression (3.20) with u=1. The absence
of trapped modes makes this solution algorithm particularly well suited to the
geophysical inversion problem.

For the first order terms we obtain by inversion of eq. (3.21) the explicit ex-
pressions

V@ k) = Uy (x) + ikQ, (x), (3.24)
with i}
- U, (x) = % { dksin2k(x—d) j—k{kReT(k)}
0
) (3.25)
0,(x)=— % { dkcos 2k(x—d) {Im (k) — Im7(=5)}.
0

To obtain these results we use the fact that by (3.17) and (3.11) 7(k) is purely
imaginary in the high frequency limit. The high frequency limit /m (o) appears
as a parameter in the solution, related to @, (x) and Q(x) by

d
4 Jdx'Q(")
1 1—e”
Imt(e0) = —-2‘ f dx Ql(x) i E— (3.26)
e [ax'Q")
14e™

Inversion of eq. (3.22) gives the following explicit expressions for the higher order
terms:

V.G k) = U, (x) + ikQ, (x), (3.27)
g m o d d
Un@®) = > > fdk {dx,.. [dx,
=2 Zyp=m 0 -= -
(3.28)
K(x, xy,... X;5k) Re { Vvl(xl, k)... V”z(x” k)},
g m oo d d
Q) = > 2> [dk fdx,.. fdx,
=2 Zyg=m 0 b oo (3'29)

1
2 K, Xy x ) K) Im {Vul(xl, k)... Vvl(x,, k)}.

Here the kernel function K is defined as

K(x, xy,... x5 k) = cos 2k(x—d) G(xy,... x; k). (3.30)
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In order to illustrate the use of these expressions we shall work out the explicit
formulae for the second order terms. The results may be written in the form

d X -

Uy(6) = [y [ ey (K (e %,,%,) Uy () U Gxy)
- e (3.31)
—Z(x,xl,x2)Q1(x1)Q1(x2)},

d X -
0,00) = [, [ 'dey KOoxpy) [Uy06) @, 065) + Uy(ry) ©, () (3:32)

with the kernels

Ko, x,, %) = % [ kK (6%, %K), (3.33)
0

T 16 by 2 .

L(x,x;,x,) = o [dk k* K(x,%,,%; k). (3.34)
0

The kernel functions K and L have the explicit expressions

1 if x <x, <x-x,+d,
K(e,x,,x,) =1 —1 if x +x—d<x, <x, (3.35)

0 otherwise.

and
L(x%,x,,%,) = %8'(x —x,)) — %8'(x —x,—x, +d) — %6'(x +x,—x,—d).
(3.36)

The convergence conditions of this iterative algorithm for solving the inversion
problem were proven and illustrated by Jost and KoHN (1952) for the case of

a purely real potential with no trapped modes. In the present case, while there

are no trapped modes the potential is complex and linearly frequency dependent.
The complexity of the interaction does not affect the convergence conclusions but
the frequency dependence may do so. We do not here undertake a systematic in-
vestigation of these convergence properties but illustrate the convergence by means
of an analytically solvable example. For the example considered the convergence
is very rapid. We also note that in the geophysical case only convergence in the
topmost layers will be of interest. This method should however not be expected
to converge in the geophysically interesting case of a step function discontinuity
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in the potential at the surface x = 0. For this reason we in the following section
develop the method in such a way that the surface discontinuity is treated
exactly.

Once the potential components U(x) and Q(x) have been determined the
physical permeability and conductivity quantities €', u’' and ¢ must be obtained
by inverting the Liouville transform (2.2). The ratio o(x)/e'(x) is given in terms
of Q(x) by eqn. (2.5b). The remaining ratio €'/u’ that may be determined from
the real part of the potential U(x) may be obtained by defining

o = %) " 337)

and solving the differential equation (2.5a) for p(x). The solution is most con-
veniently obtained by solving the equivalent integral equation (Riska (1981))

p(x) =1+xp'(0) + fxdx'(x~x') UxHp®"). (3.38)
0

Finally the physical scale z is given by

_ T dx _
z——e(x)(_)f e(x)“(x)w( x)x, (3.39)

the integration of which requires knowledge of either one of the permeability
quantities in addition to the ratios €'/u’ and o/e’.

4. Exact treatment of the surface discontinuity

In the geophysical reflection problem the permeability and conductivity
parameters that appear in the wave equation (2.1) commonly change discon-
tinuously from the vacuum (or air) values €' = u' =1, ¢ = 0 to values represen-
tative of the surface soil layers. Such a discontinuity leads to oscillations in the
reflection coefficient that survive in the high frequency limit and may destroy
the convergence of the iterative method of solving the inversion problem developed
in the previous section. In order to overcome this problem the iterative procedure
should be developed starting not from the potential free solution but from a solu-
tion to a model potential that incorporates the surface discontinuity. For this
purpose we write the potential Vi(x, k) in eq. (3.1) in the form

Vi K) = ViR, B) +vEe k), ' (4.1)
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V, (x,k)
v(x,k)

—X Fig. 3. Separation of the reflecting
potential into a model part ¥
representing the surface discontinuity
and a residual smooth potential v.

ST T TTITTTT

where V(;‘F is the discontinuous model potential and y* the smooth residual part

of the reflecting potential. In order that the model potential be analytically

solvable it may taken to have the form that corresponds to constant permeability,

permittivity and conductivity distributions with step discontinuities at the surface.
The differential equation for the model potential is

d? y§(x, k)

Gt kK= Vot )] vy (x. k) = 0. “.2)

The corresponding fundamental solutions foi(x, k) are given by the integral
equation (3.4):

A x . _ !
k) = ™ + [ay’ @1‘%—"2 Vi k) £ (xi k). (4.3)

The explicit expressions are given in Appendix 2. We also define the regular solu-
tion ¢ for the model problem (4.2) by the integral equation

. _ d . o
0000 ) = W— [ax' Sl—“ﬂ]’;—xl VI, K)o (< ). (4.4)

The solution & 0(x, k) to eq. (4.2) that has trigonometric behaviour at x = —eo is
given by the integral equation (3.12) as

£,0x, k) = sink(x—d) + j‘jdx’g(x, x) V@', k) £, k). 4.5
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with the Green’s function g(x, x") defined in eq. (3.13).
Consider now the function &(x, k) defined by the integral equation

d
E(e, k) = £ (x, k) + [dx' G, x") v'(x, k) E(x', k) (4.6)

with the kernel
G, ') = 0(x=x) () Xp() + 66 —) X () 9, (). @7)

Here ¢, is the regular solution for the model problem (4.4) and X, is the corre-
sponding irregular solution defined as

Xy 06 K) = ﬁ {75@ ~K) £ 6, k) — £,(d, B £ (x, —K) . (4.8)

This solution satisfies the integral equation (4.4) provided the inhomogeneous
term is replaced by cosk(x—d). Noting that Xod k) =1, x'o(d, k) =0 and that
hence

2% )Xo @ ) = X, 05, K) 9y (5, &) = 1 @.9)

it is readily seen that £(x, k) is a solution to the fundamental differential equation
(3.1) with the complete potential (4.1) that reduces to the model solution £, (4.5)
in the limit »*~>0.

To obtain the asymptotic behaviour of the solution £(x, k) in the limit x —>—oo
we note that by (3.14)

£ox, k) > sink(x—d) + 7, (k) cosk (x—d) (4.10)

where 7, (k) is a2 model problem reflection coefficient defined by
d . 1
7o) = fdx'ﬂ’ff‘—dl VG R) £, B). @.11)

This coefficient is by egs. (3.8) and (3.16) related to the model problem surface
reflection coefficient so(k) by

—i1y(k)

2tkd P | A4
) = [T irg )

(4.12)

From the definitions (4.7) and (4.8) the asymptotic behaviour of the Green’ s
function (4.7) is found to be
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G(x,x") - Z[cosk(x—d) + p,sink(x—d)] g, (x"), 4.13)

with the coefficients u, and Z defined as

_ . f'd -k + e k)

=—i—= i v , 4.14
Bo =1 T )~ 14, ) @19
gikd 2ikd g+
zZ =5 d-k—e Iy @ k)] (4.15)
Collecting the results we obtain
B (1 + ) sink(r—d) + 00T d
— ) _ _
£06 B) > (L +uym){sink(e—d) + e cosk(x—d)}, (4.16)
with the coefficient 7’ defined as
d
T =Z [dx' g (x', )" (x, k) £(x, k). “4.17)

By comparing the asymptotic behaviour (4.16) to that of the physical solution
(3.6) one obtains the following expression for the reflection coefficient s(k):

To+T
T T
s(k) = —e?ikd . +7(_>, (4.18)
. _To
iy T

In the limit v*~ 0 the coefficient 7' vanishes and hence the reflection coefficient
s(k) reduces to that for the model problem (4.12). The model problem reflection
coefficient contains all the oscillations caused by the surface discontinuity. Since
so(k) and (k) are known analytically (see Appendix 2) the coefficient 7' may
be calculated from the reflection coefficient s(k) using (4.18) as

1+e2%d5(k)— ity (1 — e2*95(k))
uy(1+e2ikds(k)) —i(1—e2*ds(k))

7'(k) =— (4.19)
The inversion problem now consists of determining the residual potential v* from
the coefficient 7'(k). The solution may be constructed by an iterative method
similar to that develop in the previous section.

This method is based on iterative solution of the integral equation (4.6) and .
successive substitution into equation (4.17) for 7'(k). The procedure yields the



Iterative solution of the electrodynamical inversion problem 151

following series expansion for 7'(k):
' d +
T (k) = Z [dx ¢,(x, k) Eo(x, K) v'(x, k)

+ Zi fddx fidxl... ﬁdxn 0,5, K) v'(x, k) 4.20)

A=1-0 =oo

G, x;) V' (xy, £) .. Gx,y_, %,) Vi(x,, K) £,0x, k).

As in egs. (3.18) we make the ansitze

T'_Z(’Q = uFK) 4.21)
V(x, k) = i umY (x, k). (4.22)
m=1

Substitution of these expressions into eq. (4.20) and equating terms with equal
powers of u then after setting u=1 gives

d
T'(k) = Z [dx ¢ (x, k) £y 0 k) v (x, k) (4.23)
and

d
[ gy, 1) £, 1) v, 5, K)

m d ~ .
+ > > Jdx.. dxG(x,,... x; k) V;l(xl, k)... vvl(xl, k=0 4.24)
1=2 Zyp=m~=

The kernel G in (4.24) is defined as

a(xl,‘..xl;k) = (1, k) Gy, x,) . Gy, X)) £o(xp, k). (4.25)

The potential component v may be obtained by numerical inversion of eq. (4.23)
and the higher components by numerical inversion of eq. (4.24) for successive values
of m. The complete potential is finally constructed as the sum (4.22) withu=1.1In
practice this algorithm that treats the surface discontinuity exactly should not be
more cumbersome than the method developed in section 3. The explicit expressions
for the model problem solutions needed in the algorithm are given in Appendix 2.
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5. Discussion

The ultimate value of the inverse scattering solution will depend on the accuracy
of the solution in the topmost layers. All inverse scattering solutions are sensitive
to the extrapolation of the measured reflection coefficient into the unmeasurable
high frequency region. Thus both an »exact» solution of the Jaulent integral
equations and an iterative solution obtained by the present method should be
expected to be completely unreliable at large depths into which the radiation
penetrates poorly. Thus solving the inverse scattering integral equations will not
in practice yield more information of practical utility than an iterative method
that is reliable only in the topmost layers. The iterative method does however
bring the great practical advantage of reducing the problem to quadrature.

A priori it might appear that the introduction of an artificial perfectly con-
ducting layer at given depth should introduce a large measure of nonuniqueness
in the inversion problem solution. The dependence of the depth of this layer
however simply represents a certain choice of high frequency extrapolation of the
reflection coefficient as may be seen from eq. (3.11). As such an extrapolation
is in any case necessary in practice the introduction of the reflecting layer
actually serves to only simplify the problem.

In the common situation of a discontinuous change of the conductivity and
permeability parameters at the surface of the earth the iterative method will
converge well only if the surface discontinuity is treated exactly. The formalism
appropriate to this situation is developed in section 4. Numerically the method
that treats the surface discontinuity exactly should not be far more cumbersome
than the general Jost-Kohn type method developed in section 3.
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Appendix 1
An analytically solvable example

The inverse scattering problem may be solved exactly for the reflection coef-
ficient (Riska, 1982)

—_bktia sia
s(k) = kT , a>b>0. (Al.1)

The solutions for the potential components U and Q are then

. _ ~2a(d-x) _ ~2a(d-x)
Ulx) = — a(a—b) e ; 20— 3a(a—b) eb ,
b 4 8=b @ b (1 440 e'2a(d-x)>
b b
_ -2a(d-x) (A1.2)
Q(x)=-—2a!ab by e

1 +al:*b e-2a(d-x)

It is instructive to compare the potential components calculated by the iterative

algorithm to these expressions. From (A1.1) and (3.17) we obtain the coefficient

T as

(@ —b¥)k* —2iab(a—b)k
@+b)?2k>+ 4422

(k) = —i (A1.3)

Using this expression one obtains the first order potential components U and Q,
from Eq. (3.25) as

222
Ul(x) I 16a“b*(a—b e.zg(d_x) ,

(a+b)3
(Al1.4)
- _ 8ab (Z—b) =2 £ (d-x)
%) @+b)? ¢ '
Here the coefficient ¢ has been defined as
2ab
£ = e (Al.5)

It is readily seen that to first order in the parameter a—b the functions U, and Q,
agree with the exact results (A1.2).
The second and third order corrections to the potential components as obtained



154 D.O. Riska and H.J. Vidberg

from egs. (3.28) —(3.34) are
2127, 12
Uy(x) = 16 ‘lé’z-f‘;)—fL {—3 4+ 2§(@—x) + 5@} 2@

Q,(x) =—16 ‘%%ﬁ {1—g@d-x)— e'2E(d-x)}e-2£(d-x)’

a*b%(a—b)?
(a+b)3

+ 16 e—4£(d-x)} e—2E(d-x) ,

(A1.6)

Uy(x) = —16 {2£2(d—x)*—8£(d—x) + 6 + [20£(d—x) — 20] ¢ 26@*)

0,0) =—38 "é’%;—)b}a (282(d—x)? — 6£(d—x)+ 3+ (8E(d—x) — 6) € 2@

1 4 g74E@)) g 2E),

Adding these functions to the corresponding first order terms in-(A1.4) one finds
that the results agree with the exact potential components (Al1.2) to third order
in the quantity a—b. The parameter a—b measures the deviation from unitarity of
the reflection coefficient. The convergence of the iterative algorithm thus depends
on the closeness to unitary of the reflection coefficient, an observation that is
already implicit in Jaulent’s work (1976). It is worth emphasizing that in the
geophysical case the reflection coefficient is usually very close to unitary. In the
example above it turns out numerically that the sum of the first and second order
terms approximate the exact potential fairly well for a wide choice of a and b.

Appendix 2
Explicit formulae for the model problem

We choose the model potential V(;—L so that it describes a step discontinuity in
the permeability and conductivity parameters at the surface (x =z =0):

€ = €o[0(—x) + €x0(x)], (A2.1a)
= pg[0(=%) + 101, (A2.1b)
o = 040(x). (A2.1¢)

The corresponding potential Vgt is then according to egs. (2.5)

Vi, k) = (a—l)a’(x)[%’ﬂ + 6(—x)] SPLLI TP (A2.2)

CEp€Ey
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with « defined as

€ \1/4
a=(—,‘-’)’. (A2.3)
Mo

The solutions to the differential equation (4.2) with the potential (A2.2) can be
constructed with the help of the boundary conditions at x = 0:
1O~ = F(0+, %), (A242)
f'(0—k)=af'(0+k). (A2.4b)

These are the electromagnetic boundary conditions for the transformed problem
(2.3).
The Jost functions foi (4.3) for the model problem are

f3, k) = 0(—x) % + %G(x) [(1 + é) gikx 4 (1 _5_:{2") efk'x], (A2.52)

130, —k) = 0(—x) &** + % 0(x) [(1 + é) UL (1 —é) e"""x]. (A2.5b)
Here we have used the notation

= k{l/\/l +o3/c?edegk? + 1 ny ‘/\/l +03[c?ed €221 }
2 2

. (A26)

and
_K
6= R (A2.7)

The Jost functions (A2.5) lead to the following expression for the model problem
reflection coefficient s,(k) by the definition (3.8):

1 _ 1\ aira
(1 + 8a2)+ (1 6a2)e

1 _ 1) i
(14 50+ (1~ 5a3)e

Here d is the depth (in the transformed variable x) of the perfectly conducting
layer.

The auxiliary coefficients 7,(k), uq(k) and Z for the model problem defined
in eqs. (4.11), (4.14) and (4.15) are then

so(k) = —e?d (A2.8)
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1 2i(k'-k)d _ _1_) 2K'd 2ikd
.(1+5a2 [1-e J+(1 5o 2
Toll) = ! (k'k) U\[ 2ikla 4 2ika] (A2.92)
2 2i(k'-k)d 1 i -2
(1 +5a2)[1 te ]+(1 8a2>[e +o2ikd |
(1 " _1_) [1 _ e-2i(k'—k)d] B (1 _ _L) [e-Zik'd_ Q2ikd
. S0 Sa?
Ho(R) =1 1 2i(k'*)d 1 2ikd | 2ikd]| (A29%)
—_ sl - — I A H
(1 +6a2>[1 +e ] (1 8a2) (24 ]

_5 i(k’-k)d{( e ) -2i(k-k)dy _ ( _ _1«) -2ik'd | ,2ikd

zZ 4 ¢ 1+6a2 (1+e ) 1 % (e + est ) L.
(A2.9¢)

Finally the regular solution y(x, k) (4.4) for the model problem is

9y, k) = %I; 9(—x){ (1 + 6%4—2) sin (kx — k'd) + (1 - é) sin (ex + k'd)}

sink'(x— (A2.10)
+0(x) —4]65—@

and the corresponding solution £,(x, k) (4.5):

'
ei(k d — kd)

Eo(x’ k) = ﬂ&]—c ( 1 (po(x, k).

. 1 .
L + 2i(k'-k)d ( ___4) 24k'd 4 2ikd
1+8a2> [1+e [+ (1= 5q)le ¢k (A2.11)

Because of the discontinuity in the model problem potential V(;*L defined in eq.
(A2.2) the solution of the differential equation (2.52) in terms of the integral
(3.38) must be modified. For this purpose we write the function p(x) (3.37) as

() = py(x) + p(x) (A2.12)
where po(x) is the solution for the model problem and D (x) the difference
between the actual and the model solution. The explicit expression for p, is

pox) = ab(x) + 0(—x). (A2.13)

Using the properties of this function one may derive the following integral equation
for p (x):

p(x)=xp'(0) + fdx’(x—x’) Re v (x") [a+ p ()], (A2.14)
0

which is well behaved and solvable by iteration. The equations (A2.12) and
(A2.14) thus replace eq. (3.38) in the case of using the model potential solution.



