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Abstract

A one-dimensional mathematical model is applied to a branched natural
watercourse, using an implicit finite difference scheme for the governing
equations. The use of generalized expressions for the boundary conditions
for practical applications is explained. The calculated and measured dis-
charges close to the junction point are compared, and are found to agree
fairly well with each other.

1. Introduction

Mathematical modelling of flow in watercourses has become more and more
important as a result of the development of models and computers. Natural water-
courses are almost always quite irregular with changing cross sections and bottom
topography along their main axis, which makes it impossible to solve the governing
hydrodynamic equations with sufficient accuracy by traditional analytical means.
This becomes even more difficult if the watercourse is diverging in several branches,
thus increasing the complexity of water flow. However, sometimes there is a need
to predict the flow in complex watercourses. Such is the case when major water
works are planned which may affect the environment in a non-desired way.

In this article we will present the application of a one-dimensional mathematical
model fo a branched natural watercourse. The diurnal regulation of the discharge
from a hydropower plant influences the distribution of flow between two branches
in the watercourse with subsequent influence on the water quality in the branches.
Special attention has been paid to the formulation of boundary conditions in the
model.
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2. Equations

The hydrodynamic equations describing one-dimensional unsteady open channel
flow are usually given in the form of the de St Venant equations:
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Here Q is the discharge, z the water level measured from a horizontal datum,

b the width available for storage, g the lateral inflow, 4 the cross-sectional flow
area, K the conveyance, g the acceleration of gravity and § is a coefficient for the
non-uniform velocity distribution.

After discretization, the above equations can be solved numerically when given
one initial condition and two boundary conditions. Usually the physical coefficients
b, A, K and to some extent § vary with stage, giving the equations a non-linear
character. The coefficients can most conveniently be tabulated as functions of z,
from which coefficient values corresponding to the current water level are obtained
by linear interpolation.

3. The difference scheme and the solution algorithm

The equations (2.1) and (2.2) can be discretized in a number of ways. In this
case a four-point scheme of Preissmann type has been used. According to this the
partial derivatives are approximated by
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where [ is either Q or z, n is the time level, j the computational point, ¢ and ©
are weighting coefficients.

In the fully centred case ( = © = 0.5) the degree of approximation of both
time and space derivatives is of second order. Thus the difference scheme used is
the following when ¢ = 0.5
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The non-linear term (8/3x)(BQ?/A) in eq. (2.2) has been discretized according
to a method following Verwey (CUNGE et al, 1980). The difference equations
(3.3) and (3.4) are formally of the type

+1 +1 +1 +1
ALQM + Bz + CLORY + Dzl = E, (3-5)
A2,08" + B2,2 + 2,000 + D221 = B2, (3.6)

Thus the scheme is implicit and for large models (models with many computa-
tional points) a double sweep procedure is most economical, and is used here.
Double sweep methods are necessary only for subcritical flows. A description of
the procedure required is given e.g by ABBOTT (1979), but because the applica-
tion of the method to branched systems requires special treatment of junction
points, a short description will be given here. The explanation of the numerical
treatment of the boundary conditions is also aided through this. The following
relations are introduced, dropping the superscript:

Q; = Fiz; + G @7

z; =HQ t1z, +J (3.8)
Algebraic expressions for the coefficients H;, I; and J; are obtained after inserting
equation (3.8) into equation (3.5). Recurrence relations for F; and G; are obtained
after substitution of equations (3.7) and (3.8) into equation (3.6).
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Thus Fj,, = fiF;) and G;,, = f(F}, G;). After initialization of F; and G, in ac-
cordance with the boundary conditions in the point j = 1, the first sweep can be
carried out from point j = 1 toj = jj — 1, where jj is the last grid point. In this
sweep values for F.1» Gjuys Hy, I and J; are computed. In point jj the second
boundary condition is applied, and the return sweep is executed using equations
(3.7) and (3.8) for the computation of Q- and z-values in internal gridpoints. The
flow direction relative to the sweep directions is of no importance, the final result

will be the same.

4. Boundary conditions
4.1 Single channel

In models intended for routine applications it is convenlent to use general ex-.
pressions for the boundary conditions, which then can be expressed with coefficients
o, f and v as:

Q" 4 B2l =1 4.1
In the first gridpoint the initialization of F and G is obtained through
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In the last gridpoint one can introduce the additional relation:
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Values for the coefficients are determined from the boundary conditions which
usually are of the following type:

1) Q given as a function of time (e g the regulated flow from a hydropower plant).

2) z given as a function of time (e g the water level of a reservoir).

3) A Q — z relationship in the form of a rating curve (e g the free flow over a
crest or a weir)

In the above cases the values of o, § and v are obtained as follows.

1) Discharge is given:
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Fig. 1. Discretization of a stage-discharge relationship.

2) Water level is given:

a =10%.10% g, =1; v, =z

n+l

%; =0 Bi=1: =2
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A small value of «, is required in this case to avoid division by zero in equation

(4.2). The thus introduced error is usually negligible in practice.

3) A rating curve is given.

If the stage-discharge relationship is given as a tabulated function, it can, using

the notation in Fig. 1, be expressed as
aQ
+1 ay . on+
0" =0+ E @ - 7
Thus we obtain

a=1; ﬁ=E; 7=Qk—zzk

A stage-discharge relationship cannot be applied at the upstream boundary, be-

cause it will lead to numerical instability (CUNGE et al 1980).
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42 Internal boundary conditions

In branched watercourses the junctions are points which require special treatment,
when applying double sweep methods. One internal boundary condition that links
all the different branches in a junction to each other has to be introduced. Let us
consider a watercourse which is discretized as shown in Fig. 2. The first sweep can
be initiated at @ using the applied boundary condition and can be carried on to
point 11. Another sweep can be initiated at @ and carried on to point 21. But
before one continues sweep to point @, points 11, 21 and 31 has to be linked
together assuming compatibility conditions in these points. From continuity one
gets

Qi1 + 0y =0y (4.4)
and assuming water level compatibility

Zy1 T 291 = 23 “.5)
the following explicit expressions can be obtained:

Fy=Ft 5y, (4.6)
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Fig. 2. First sweep directions in a branched channel system. @, @, ® are external boundary
points, 11, 21, 31 internal ones.
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Now the sweep can continue from point 31 to ®, where again a boundary
condition is applied to initiate the return sweep back to the junction and further
on along the two branches.

If flow velocities are high so that the velocity head becomes significant, an
energy level compatibility criterion should be used in the junction. Then a slightly
more complicated expression is obtained on the right hand side of equations (4.6)
and (4.7).

Internal boundary conditions has also to be specified when singular head losses
in sudden channel expansions or the flow over a submerged weir are to be modelled.
It is always important to pay enough attention to the selection of boundary points
and boundary conditions, because in principle they affect the solution in all the
computational points.

5. Application to the Mintti watercourse
5.1 Description of the study area

A numerical model for the highly imegular Minttd watercourse was required,
because the regular flow from a hydropower plant in Méntti changed the main
flow direction in the Pieskansalmi sound every time the gates were opened, and
thus it was polluted with water from a paper factory waste water outlet situated
close to the hydropower plant. A map of the area and the used computational
grid is shown in Fig. 3. The cross sectional areas, which ranged from 70 to 22 000
m?, were obtained from somewhat inaccurate depth contour maps. It was not
possible to remeasure the cross sections except for the two sounds close to the
junction point 51. The main flow direction in the Kuorevesi branch is due to
lateral inflow from several brooks and ditches discharging into this branch, and
its magnitude will thus depend on the hydrological conditions.

52 Boundary conditions and estimations of
coefficients

The points 11 and 21 have been treated as closed boundaries where the discharge
is zero. At the point 41 (Minttd) the flow varies according to the regulation and
hence the discharge is given as a function of time. Discharge values were available at
hourly intervals from the power plant. In the point 61 (Vilppula) there is a crest for
which a rating curve exists and hence used as a boundary condition here. Points 31
and 51 are internal boundary points where water level compatibility is used.



62 John Forsius and Timo Huttula

N

KUOREVE S|

©

Fig. 3. The study area and computational points. = denotes natural flow direction, O boundary

point.

Lateral inflow is significant only in the Kuorevesi branch where it is estimated
from the mean discharge in Méintti during the study period, the ration of discharge
being equal to the ratio of the drainage areas of Kuorevesi and Ménttd. Hence the
total discharge from the Kuorevesi branch was fixed to 1.6 m3/s.

The conveyance in equation (2.2) was computed according to a Chezy resistance
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law. The value of the friction coefficient needed in the formula has been estimated
using CHow (1959), who gives a Manning roughness for wide rivers (surface width
greater than 30 m during floods) between 0.025 and 0.06 corresponding to a

Chezy coefficient of about 20...50 m%5s™!. After a few test runs a C-value 33 was
used throughout the model. The watercourse was ice covered during the study
period, and one third of the surface width has been added to the wetted perimeter
values of the cross sections, to account for the increased friction from the ice cover.
This method is suggested in. the handbook of RIL (1968). The value of the velocity
distribution coefficient § was put to 1.1 in all cross sections.

6. Measurements

Current velocity measurements in the Pieskansalmi sound leading to Kuorevesi
were done by the Hydrological Office of the National Board of Waters with a
registering current meter (Aanderaa RCM4) at 10 min. intervals during 8.2.—27.2.
1979. Depth of measurement was 2,0 m, total water depth 4.1 m. The relation
between measured current velocity and discharge in the Pieskansalmi sound was
established through discharge measurements in the sound. The mean discharge of
the Mintti power plant was 8.1 m3/s during this period, the variation being 1.4...
25.1 m3/s. The watercourse was covered with ice of thickness 20...50 cm thus
eliminating the influence of wind on the currents. The water level variations caused
by the regulated discharge were known to be small, at most only a few mm, so
the use of standard recording water gauges was considered inappropriate.

7. Results and conclusions

Mean hourly values of the predicted and observed discharges in the Pieskan-
salmi sound are shown in Fig 4 for the last 10 days of the study period. It is
seen that there is an immediate response to the regulation of the Minttd power
plant. The predicted peak discharges are somewhat too low, and the amplitude of
the observed discharge variation is greater than the predicted. The correlation
between the discharge of Minttd and the observed discharge in the Pieskansalmi
sound is 0.929 for the whole study period. This clearly indicates the dominating
role of the regulation on discharge in this sound, and the limited effect of other
dynamic considerations. The correlation between predicted and observed discharges
for the same period is 0.970, which shows that the applied model is appropriate
in this case. This is even more so, when one takes into account that the model
was not calibrated in any particular way, by e.g estimating the friction coefficient
in different cross sections more.accurately. Accurate measurements of some im-
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Fig. 4. Observed and predicted discharges Op in the Pieskansalmi sound. Positive values indi-
cate flow towards Kuorevesi. 0, is the regulated discharge of the Minttd power plant.
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portant cross sections should also improve the model. In any case it is encouraging
that a fairly good agreement between measured and modelled discharges can be
obtained in an irregular watercourse without too much computational effort.
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