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A two level quasi-geostrophic model incorporating a simple
Newtonian form of diabatic heating and internal as well as
boundary layer friction is used to study the annual variation of
certain aspects of the general circulation. The model predicts
the annual variation of the zonally averaged winds at the
two levels as well as the zonal mean of the temperature. The
momentum and heat transports by the large-seale eddies in the
atmosphere are incorporated in the study through the use of
exchange coefficients for the transports of heat and quasi-
geostrophic potential vorticity. These exchange coefficients
provide an indirect specification of the momentum transport
by the eddies.

The investigation is limited to meridional variations which
may be described by a single sinusoidal component, and to
annual variations described by the annual mean and, the first
Fourier component of the annual variation. It is shown that
the model is capable of predicting correctly the annual variation
of the mean zonal wind, the eddy heat transport and certain
aspects of the annual variation of the momentum transport
and of atmospheric energetics. The main discrepancy between
the computed results and atmospheric observations is that the
predicted annual variation of all energy quantities is too large.
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1. Introduction

In a series of investigations [5], [6], [7], it has been attempted to
construct atmospheric models which may be used to simulate the behavior
of the atmosphere on an annual and seasonal basis. The limited purpose
of these models has been to predict the behavior of the zonally averaged
state of the atmosphere. It has been known for some time that there is
a most important interaction between the zonally averaged quantities in
the atmosphere and the deviation from this average, ¢.e. the eddies in
the atmosphere. The changes of the zonally averaged winds are for
example influenced directly by the convergence of the eddy momentum
transport just as the changes in the zonally average temperature are
governed to some extent by the convergence of the eddy transport of
sensible heat in addition to other processes.

In the earlier investigations [5], [6], it has been assumed that one
may describe the meridional transport of sensible heat by an empirical
relation where the transport is related to the meridional temperature
gradient through an exchange coefficient which in general is a function
of latitude, pressure and time. Such a relation is possible in the tropos-
phere because observational studies show that the transport of sensible
heat in this part of the atmosphere is from the region of higher to the
region of lower temperature. An analogous simple relation is not possible
for the meridional transport of relative momentum by the eddies because
it is observed that this transport at most places in the troposphere is
from regions of low to regions of high relative momentum. However,
based upon an idea by GreEw [1] it was shown by Wnn-NIELSEN and
SELA [7] that the meridional tramsport of quasi-geostrophic potential
vorticity may be described using an exchange coefficient which also in
general will depend upon latitude, pressure and time. As shown in [7]
it is then possible to obtain a parameterization of the convergence of
the momentum transport by the eddies using the exchange coefficients
for potential vorticity and sensible heat. The investigation contained
furthermore an empirical determination of the exchange coefficients for
various levels throughout the troposphere.

In the earlier attempts to simulate the annual and seasonal behavior
of the zonally averaged quantities [5], [6], it was assumed that the effects
of the momentum transport by the eddies on the zomally averaged
quantities may be disregarded in comparison with the effects of the
transport of sensible heat. While the neglect of the momentum transport
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is justified for the largest meridional scale it was also apparent from the
investigations that the details of the predicted zonal wind profiles were
seriously in error both with respect to the meridional and the vertical
distributions. It was for example a consequence of the assumption that
the predicted wind distribution at the ground (100 cb) was identically
zero in the earlier model.

Tt is the purpose of this paper to describe the results of an investigation
where the assumption concerning the neglect of the momentum transport
has been removed and replaced by a parameterization of the convergence
of the momentum transport as described in [7]. In this more general
model it is now possible to simulate the energy conversion between the
eddy kinetic and the zonal kinetic energy in addition to the processes
already incorporated in the earlier papers.

The most general case in which the exchange coefficients vary with
latitude will be reported elsewhere including the description of the
numerical treatment of the problem which now most conveniently is
handled as an initial value problem. In this case one can predict the
zonal winds and the zonal temperatures as a function of latitude and
time at selected levels by making a time-integration over several years.
In this paper we shall restrict the solution to the very simple case in
which we only consider a single component in the meridional direction.
We are therefore mainly concerned with a prediction of the annual
average and the annual variation of the largest scale in the meridional
direction, and are leaving the questions concerning the detailed distri-
bution to the later report.

Since our case can only be expected to describe certain general features
of the annual variation of the general circulation we shall furthermore
use Cartesian geometry and work on a betaplane, a procedure which
further simplifies the mathematical treatment.

2. Outline of the model

The equations for the two level quasi-geostrophic model are

an - 9

S @00 = e (pr — ye) — 2 ALy 21)
06 -
& + 7 (Qs93) = — p@® (pr — vm) + 2 ALp — & (Le — 207) (2.2)
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where
Qi=r+ {1 — ¢yr (2.3)
Qs =[+ {3+ ¢y (2.4)

The reader is referred to [6] for the explanation of the remaining
symbols in (2.1) and (2.2). Forming zonal averages of (2.1) and (2.2)
and using a Cartesian geometry we have:

Q| Q)
i Ty = e —vs) — 240, (2.5)

0Q;, 0(Q5v5)-
ot T oy

= — ¥ (Yr. — Yg) + 2 ALy, — & (L — 28,) (2.8)

Based upon the results obtained in [7] we make the approximations
that

aQI:

(@) = — K, dy (2.7)
aQ3z

(@3v5): = — K oy (2.8)

and (2.5) and (2.6) become, assuming here for simplicity that K, and
K4 are not functions of y:

anz alez
n = K, £ + v (Yr. — pom) — 2 ALy, (2.9)
00, 02Q);,
3: = K, ay: — Y (Yrs — Yrg) + 2 Ay, — & (Cos — 2 {1.) (2.10)

We note from (2.3) and (2.4) that

oy,
= 2
le :f + ayz —q Y1, (2’11)
32’('032
Q3z = f _'— ayz + 92"/)Tz (2'12)

Denoting in general

( De=%0C )-+( )l (2.13)
( =% )1—( )l (2.14)
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we find that

0PPye
Q=T+ oy (2.15)
621PT5
QT: = ayg - (_IZWTz (2‘16)
Adding and subtracting (2.9) and (2.10) and using in addition
K, =} (&, + Ky) (2.17)
Kp=3% (K, — K,) (2.18)
we find
0 | 0%pys 0P s %, Py,
2] =, e |G- ] -
4 Y Y (2.19)
e [321/)”2 521,0'1-,}
2 | a2 7 o2
9 |, O Py, 0"y
— 2 — K. T2 T
at[az Q"/’TzJ *l:a,t q oy Ta4
Y 4 Y (2.20)
Ppr, £ {821/;*, aquT,]
2 — _ = —
—I— 7q (’IPTZ sz) 2 'A ay2 + 2 . ayz ayz

Equations (2.19) and (2.20) have .. and wr, as the only dependent
variables. The equations can in general be integrated. As mentioned
earlier we shall here in the initial treatment restrict ourselves to the
case where

Pun = Py(t) 08 py , Yr, = Pr(t) cos py , Y. = g (f) cos py (2.21)

where y = /D, and D is the width of the channel. Substituting (2.21)
in (2.19) and (2.20) we get

AV
dt. —_ — </"21{>‘.< ——l— g‘) T* —_— (‘Mz_IIT + quT —_ E)WT (2.22)
(1+u2 = \WEr—g) ¥ m

2 - (2.23)
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A particular solution of these equations are now obtained by writing
the dependent variables in the form:

Vult) = PO + A, cos st + B, sin st

o . (2.24)
Yo () = PP 4 Ay cos st + Bysin st
while the forcing function Wg(f) has the form
Yu(t) = PP 4 Agcos st (2.25)

The implication of the form (2.25) is that we count the time from
the maximum in Pg(f). (2.24) and (2.25) are substituted in (2.22) and
(2.23). Equating time-independent values, terms which depend upon
cos st, and terms which depend on sin st, respectively, we get the follow-
ing equations:

(.“'ZK* + g) PO+ (WK + Ky — B PP =0 (2.26)

€ q2
(uZKT —§> 7Y + (/ﬂK* + @Ky +e+24 4y ;;) =y

and
—SA*+(/‘2K*+§>B*+ 0-Ap+{(*+ ¢*) Ky — e} Bp=0

(MK*+§>A*+ s By + {2+ ) Kyp— e} A+  0-Bp=0
e q?
0-4, + ,uzKT—§ B, — 1"]“/? s« Ap+ (2.27)
q2
{(ﬂ2+92)K*+8—I-2A+y;§}BT=0
2
(ﬂzKT—i;‘)A*—lLO'B*‘F{(‘“2‘[“92)]{*_'—8’*_2‘4_!—7[%2}‘47'_!—
' 'y
<1+/?>8'BT:'}’!?AE

The solutions of the systems (2.26) and (2.27) constitute the complete
solution of the problem. In order to obtain the solution we must select
the numerical values of all parameters.
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3. Solution of the problem

Most of the numerical values for the various constants can be adopted
from the earlier studies [5], [6]. We list these values as follows without
further justification:

22
q2= ;‘% =4 x 1012 m-2

nz
ut = = 0.1 X 10-2m—2, corresponding to D = 10"m

&= 3.0 X 10-% sec!
s = 0.2 X 108 sec™?
A = 0.6 X 10-8sec™.
The constant values of K, and K, were obtained from the annual

mean values of the exchange coefficient for the levels 30 cb and 70 cb
by computing the meridional average. In this way one finds that

K, = 0.9 x 105m?sec

K; = 2.0 X 106 m?sec™
and therefore

K, = 1.4 X 10°m?sec™

Ky = — 0.6 X 108 m?sec™.

The numerical values of ¥ and Ay were taken from the calcula-
tion given in [5]. They are:

P — 24.8 x 108 m?sect
and
Ap = 17.4 X 10% m?secL.

Using the values listed above it is straightforward to solve the systems
(2.26) and (2.27). One obtains the following values of the six unknowns
in (2.26) and (2.27):

P = 60.5 X 10° m?sec™
PP — 18.8 X 108 m?sec?
A, = 33.7 X 10°m?sec!
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B, =19.1 X 10°m?2sec!
Apr =112 x 108 m?gec
By = 4.7 x 106 m2gsec!

which is the solution of the simple problem stated here. It is probably
most instructive to express the solution in terms of the zonal wind
components at the various levels. In calculating the zonal winds we use
the formula that

op:

U= — o = p¥(t) sin py = U(t) sin uy (3.1)

where
Ult) = u? () (3.2)
Using the values given above we find after some manipulations

U; = 24.9 4 16.0 cos s (t — 28)

(3.3)
Uz = 13.1 -} 8.4 cos s (¢ — 32)

where the annual mean values and the amplitude of the first harmonic
are given in m sec~!, while the phase is given in the unit: days.

The wind distribution at 100 ¢b, denoted by a subscript 4, is calculated
from the extrapolation formula

3 1
U, = E U, — 5 U, (3.4)

and we obtain
Uy=172+4 4.7coss (t — 41).

We may consider the quantities U () as a measure of the maximum
winds at the different levels. The prediction of this model is therefore
that the maximum winds at the upper level (25 cb) occur 28 days after
the maximum in the foreing function Ye(t), which in turn is a measure
of the temperature difference between equator and pole in the equilibrium
temperature. The model also predicts that the windmaximum occurs 32
and 41 days after the same time at the levels 3 (75 cb) and 4 (100 cb),
respectively. A comparison of these predictions by the model with the
observed behavior of the atmosphere will be made in the next section.
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Several quantities of considerable dynamical significance can be
computed from the solutions which have been obtained. We shall first
compute the vertical velocity, which can be obtained from the thermo-
dynamic equation. Writing the thermodynamic equation in the form:

opr oP 1RH 26
ot —}—U VWT“Qwa—szGP (')

as in any two level quasi-geostrophic model we obtain by taking the
zonal average that

oy [oyr  2peok| R 1

Q=GP | o oy cp oP H. (3.7)

In (3.7) we introduce the expression for H, and in addition
(pr)s = — Ky a;p; - (3.8)

as used in (6) and find
P | 0pr.
s = & ¢? [ o — Knlr + y(pr. — %E)] (3.9)
The expressions (2.21) are substituted in (3.9), and we find

w; = £ (f) cos uy (3.10)

where

T

P av
20)=7 ¢ [ 5 il Wy 4 (P — ‘PE)} (3.11)

The values of 2 (£) can be computed immediately using the solution
given at the beginning of this section. We find:

Q (t) = 1078 (1.76 - 1.22 cos s (¢ — 46) (3.12)

where it has been assumed that Ky in (3.8) is equal to 1.7 X 10°m
sec—1, a value obtained as a meridional average from the data given in [7].

The single meridional component used in this solution does not permit
more than a single meridional cell in the mean meridional circulation.
However, (3.12) shows together with (3.10) that the single cell is an
indirect cell with sinking motion in the low latitudes and rising motion
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in the high latitudes during the whole year. The intensity of this cell is
strongest in February, where the maximum sinking motion is 2.98 x 10-6
cb sec? ~ — 0.4 mm sec!, and of the smallest intensity in August.
The direction of mean meridional circulation is opposite to the direct
cell created by the diabatic heating. This cell can be calculated from (3.9)
by finding the contribution from the last term. Using the same technique
as before we find that the mean meridional circulation due to the heating
can be described by the expression

P
Qp () = 7 *y (¥r — ¥g) (3.13)
0
or .
Qy (£) = 10-5 {— 4.76 4 6.19 cos s (t — 143)} (3.14)
When (3.14) is converted to the vertical velocity, measured in
mm sec—, using the formula o = — gow, we find that

Wy (t) = 0.95 4 1.24 cos s (¢ + 37) (3.15)

(3.15) shows that the intensity of the mean meridional circulation
due to the heating is at its maximum in late November. The circulation
is of a direct nature except during a period in early summer where the
direction of the cell is reversed. The change in direction is related to the
difference between the equilibrium temperature and the actual temperat-
ure in the model. This can be seen by computing the difference

Vg — Pr =108 X {5.95 + 7.74 cos s (t -+ 37)} (3.16)

which shows that ¥ — ¥ is negative during the early summer.
We shall next calculate the transport of sensible heat predicted by
the model. Using the exchange coefficient we get

Ed

(Tv), = — Ky (3.17)

The thermal wind relation is introduced in (3.17), and we find that
o
(T’l))z = KH E (?'(’lz - u’3z) (3'18)

Using the values given in (3.3) we find that

(T'v)s = {7.10 4 4.58 cos s (t — 23)} sin py (3.19)
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showing that the model predicts a heat transport with a maximum n
the middle of the channel and with a maximum heat transport in late
January and a minimum, but still positive, transport in late July.

The convergence of the momentum transport can also be calculated
from the solution. Using the parameterization given in [7] we find using
the notation M, = (u,v,), that

oM, ~
— 2 =8, —8; (3.20)
‘where
D
~ 1
S, = D S, dy (3.21)
0
and
8, = — K, — pPKyu, -+ Q* (Kg — Ky) Uy, (3.22)

Substituting the expressions for and u; and using the
already adopted values for the exchange coefficients we find that
oMM

2
~ — 106 {18-12 - 11.72 cos s (¢ — 22)} {si.n uy — ;} (3.23)

The expression for the convergence of the momentum transport ab
level 3 is derived in an analogous manner, and the resulb is with My =
(usV3)s

3

9 2
— — 10~ _ ; =
2 10-6 {2.83 - 1.89 cos s (¢ — 13)} {sm uy ﬂ} (3.24)

The expressions (3.23) and (3.24) may be integrated with respect to
y in order to obtain the momentum transports. We find

M, = {57.3 4 36.8 cos 5 (t — 22)} {cos @Yy — (1 — 2y:)} (3.25)
My = {8.9 4 5.9 coss (£ — 13)} {cos myy — (1 — 24)} (3.26)

We find that the model predicts a momentum transport which at
each level is positive in the southern part of the channel and negative
in the northern part of the channel in qualitative agreement with the
observed momentum transport in the atmosphere. In addition, the
momentum transport at the upper level is considerably larger than at
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the lower level, and the maximum momentum transport is in the later
part of January at the upper level, but in the middle of J: anuary at the
lower level. We note furthermore that the momentum transport at each
level is qualitatively the same throughout the year.

The last quantities which will be computed from the solution of the
model equations are all related to the energetics of the model. It is
possible to compute the amounts of available potential and kinetic energy,
the generation of zonal available potential energy, the energy conversions
from zonal available potential to eddy available potential energy, from
zonal available potential to zonal kinetic energy, and from eddy kinetic
to zonal kinetic energy, and finally the dissipation of zonal kinetic energy.

Some of the integrals are of the type

f—ID / / X@Y @)costuydady =32 X )Y (1) (3.27)

In other integrals cos uy in (3.27) is replaced by sin uy, but it is
seen that the result is unchanged. The only other integral is Q (K, K,)
which is of the type

L D
1 2
D / /X t) Y (¢) sin py (sm Wy — ;) dx dy (3.28)
0 0
A direct evaluation of (3.28) gives she result

(% — a%) X®Y@#)=01X @) Y @) (3.29)

The formulas for various integrals are listed below:

D

1 ,
p 925/1.0%,61?/
0
D

3 (@l + ui) dy

a-

4.

I

1
D

";q\
ll
< | N

o\

D
P 1
q (Az) =2 3 qz'}’ 5 Yr. (sz — ’IPTZ) dy
0
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D
P 1
0
D
2 fo 1/
O(Aliji'z) = - g D quzwz d?/
0
D
0K K P ( oM, oM, 2
(E’ z)_‘—gD Uiy ay +u3z ay>y
0

D
P 1
D (K,) = ; D / (& * Us,Ugy +- % A (uy, — u3,)? dy
0

Tt is seen that the simplicity of the model creates some arbitrariness
in the evaluation of some of these integrals. As seen from the model
equations (2.9) and (2.10) we need only the exchange coefficients K,
and Kg to find the solution, while Kp is unnecessary for this purpose.
K, is, however, needed for the evaluation of w; and the momentum
transports M, and M, In terms of the energy conversions we need
the value of Ky directly or indirectly in C (4., 4g), C (4, K,) and
O (Kz, K.). Because of this arbitrariness there is no unique energy
diagram corresponding to the model, because a different value of Ky
will give a variation in the energy diagram. In addition, we can not
expect under these circumstances to obtain a balanced energy diagram
in the sense that each energy reservoir will have as much inflow as outflow
of energy per unit time. Since it is desirable to have the last requirement
fulfilled, we have proceeded in the following way. D (K.) and C(Kg,
K,) were computed first according to the formulas given in (3.30).
C (4., K.) was then determined from the relation

dK.
dt
C (4., Ap) was next computed from (3.30) and G (4,) was calculated
from the relation
a4,
dt

— (4., K) + O (Kg, K.) — D (K) (3.31)

= G (4,) — C (4s, 4g) — O (4, K3) (3.32)

It should be pointed out that several other procedures are possible.
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The results of this calculation are:
Ay = 4272 - 4567 cos s (t — 23)
K, = 1193 - 1267 cos s (t — 29)
G (4,) = 2.14 4 2.46 cos s (£ — 1)
C (A, Ag) = 1.46 + 1.56 cos s (f — 24) (3.33)
O (4:, K,) = 0.68 + 0.72 cos s (t — 21)
C (Kg, K.) = 0.30 -+ 0.32 cos s (f — 25)
D (K;) = 0.98 4 1.05 cos s (t — 35)

In (3.33) A, and K, are given in the unit kj m—2, while the rest of
the quantities are given in Watts m~2. Several comments should be made
regarding the results stated in (3.33). The arbitrariness of the calculation
shows up clearly in the value of C (4,, K.) which is positive in (3.33)
in spite of the indirect mean meridional circulation. In addition, it is
noted that the amplitude of the first Fourier component of the annual
variation in all cases is larger than the annual mean value. This is clearly
in error in the quantities 4, and K, which by definition are positive
throughout the year. The reason is naturally that we have included only
the first Fourier component and therefore deal with a strongly truncated
system. An example will illustrate this point. Consider for example

P
A, =3— Vi =13 7 ¢ (PP + Ay cos st 4 By sin st)? (3.34)

g
When we include all terms in the evaluation of 4, we get

Ay = 4272 + 4567 cos s (f — 23) -+ 1034 cos 2 st (3.35)

and this quantity is positive definite according to (3.34). A similar remark
holds for all other quantities.

A comparison will be made between the results in (3.33) and observ-
ational studies in the next section but we mention here that the model
predicts a time lag of 6 days between the maxima in 4, and K., that
there is a time lag of 34 days between the maximum in @ (4:) and
D (K.), but only 20 days as the time lag between @ (4.) and C (4., K.).
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4. Comparisons with observational studies.

The comparison of the results obtained in section 3 with results
obtained from an analysis of atmospheric data is difficult, because the
model assumes a very simple meridional distribution. However, a qualita-
tive comparison can be made.

The quantities U,, Uy and U, given in (3.3) and (3.5) are the
maximum zonal winds at the different levels in the model. In order to
compare the quantities with observed quantities it is therefore natural
$0 make an analysis of the mean zonal winds close o the maximum winds
in the atmosphere. Zonal winds were available for the year 1963, and the
annual average and the first Fourier component of the zonal winds
were computed at 32.5°N close to the maximum in the meridional direc-
tion. The results of this analysis were

u, — 26.5 - 18.0 cos s (£ — 30); p = 20 ch
uy = 22.2 - 15.1 cos s (£ — 30); p = 30¢cb
sy = 12.8 + 10.0 cos s (¢ — 32); p = 50¢cb (4.1)
u; = 6.5+ B5.8coss(t— 34); p="T0cb
us = 3.0+ 3.2c0ss(t— 40); » = 85¢ch

A comparison between (4.1) and (3.3) shows that the predicted winds
are in reasonable agreement with the observed winds. Note, in particular
that the predicted inerease of the phase with increasing pressure is con-
firmed by the results listed in (4.1). In making the comparison between.
(3.3), (3.5) and (4.1) one should note that the results listed in (3.3), (3.5)
are counted from the maximum in ¥y, while those in (4.1) are counted
from January 1. However, as we shall see later, these points in time are
only separated by a few days.

We have no detailed observational studies which can be used to
malke a comparison with the predicted mean meridional circulation, but
carlier studies indicate at least that the maximum intensity is found in
winter as indicated by (3.12).

Data are available for the transport of sensible heat permitting a
comparison with (3.19). Again, we use data from the year 1963. Since
the heat transport given in (3.19) is the maximum heat transport in the
model it is natural to compare with data selected from a latitude close
to the one displaying maximum heat transport. The latitude 45°N was
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selected, and an analysis of the heat transport in the layer from 50 cb
to 30 cb was made. When the result is converted into the quantity (7).
'we obtain

(Tv): = 7.94 + 6.29 cos s (¢ — 23) (4.2)

which shows that the heat transport is well predicted by the model.

In order to compare the computed momentum transports given in
(3.25) and (3.26) with observational studies we have in a similar way
made an analysis of momentum transport data from the year 1963 in
this case at 40°N which is close to the maximum northward transport
in the annual mean. The results at the various levels are listed below:

M = 57.1 4 29.9 cos s (¢ - 5), 20cb

M = 48.6  34.1cos s (t — 2), 30ch

M = 22.2 + 14.8 cos s (t — 15), 50 cb (4.3)
M =102+ 4.3coss(f— 57), 70 cb

M= 7.7+ 3.2c0ss(t— 145), 85 ch

showing that while the order of magnitude of both the annual average
and the amplitude of the first Fourier component are correct we have
an incorrect variation of the phase with pressure in the model as comp-
ared to the observational studies. It can be shown that this discrepancy
can not be corrected by another choice of K5 for the given values of
K, and K; used to produce the solution, if we want to maintain the
fact that the momentum transport is larger at the upper level than at
the lower level.

The results listed in (3.33) for the energetics of the model may be
compared with those given by Win-NirLsEN [4] based on observations.
It is seen that the annual mean values are of the correct order of magni-
tude. The same holds for the computed phase angles, while the amplitudes
of the first Fourier component of the annual variation are too large in
all cases. This is in all likelihood due to the simplicity of the model, and
one may point to several factors which may correct the discrepancy. The
most likely factor is the simplicity of the Newtonian form of diabatic
heating which does not model the heating of the atmosphere in more
than a qualitatively correct way. Other factors are a possible annual
variation in the various parameters in the model such as e, 4,K,,K,
and Ky . However, we do not know too much about these variations
ab the present time from observational studies, and new knowledge is
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necessary to incorporate such variations in the theoretical calculations.
On the other hand test calculations using the present model, but in-
corporating hypothetical annual variations of the parameters mentioned
above, leads to the tentative conclusion that the main factor responsible
for the discrepancy is the simplified diabatic heating.

5. Variation of parameters

In the solution presented in section 3 of this paper we have selected
values of the parameters which are reasonable based on available evidence.
However, it is realized that there is considerable uncertainty in each of
the parameters which describe the model. It is the purpose of this section
to discuss the results of a few calculations which will illustrate the sensit-
ivity of the solution to the choice of the parameters.

We shall first select the extreme case in which we make the exchange
coofficients equal to zero, 4.e. K, == Kg= 0. This means that the
eddies in the atmosphere has no influence at all on the zonal flow. When
the systems (2.26) and (2.27) are solved under this assumption we get
the result:

U, = 21.7 4 13.5 cos s (t — 32)
U= 1.2+ 4.5coss(t—42) (5.1)
U,= 0.0+ 1.2coss (t-} 56)

which shows that the interaction between the eddies and the zonal flow
is of great importance to explain the annual variation. If this interaction
is not present in the model we get no mean annual flow at 100 cb. We
obtain in addition a too large phase difference between the zonal winds
at 25 cb and 75 cb, and a completely erroneous phase angle at 100 cb.
The same statement can be made for the solution presented by WiIN-
NreLseN [6] where the effects of the momentum transport was neglected
compared to the heat transport. In that case there is not a mean annual
flow at 100 cb either. The results presented in (3.3), (3,5) as compared
with (5.1) and the solution presented in [6] show the importance of
modeling the momentum transport in a correct way.

In the following series of experiments it was decided to keep the
following parameters constant: K; = 0.9 X 10°m?sec™, Kz= 2.0 X
106 m2secd, ¢2=4 X 1022m=2 and p*= 0.1 X 1072m~2, while the



182 . A. Wiin-Nielsen

values of ¢, 4 and y were varied from experiment to experiment. As
the basic solution we shall take the case described in details in section 3.
This solution will be called experiment 1. The numerical values of the
parameters in the other experiments are listed in Table 1.

Table 1
¥, 108 goc—1 g, 108 gec—t A, 10 %sec?
Exp. 1 0.4 3.0 0.6
Exp. 2 0.8 6.0 L2
Exp. 3 0.2 15 0.3
Exp. 4 0.8 L5 : 0.3
Exp. 5

0.2 - 6.0 1.2

The solutions for Uy, U and U, in experiments 1—5 are given in
Table 2, where we have listed the annual mean value U, the amplitude
of the first Fourier component U, and the phase angle §, measured
in days for each experiment.

Table 2
U, Us Uy
U U o1 Us Uas O3 Uy Uas Oy
Exp. 1 24.9 16.0 28 13.1 8.4 32 7.2 4.7 41
Exp. 2 23.6 16.1 15 10.6 7.2 19 4.1 2.8 28
Exp. 3 25.6 14.2 45 15.7 8.8 51 10.8 6.1 59
Exp. 4 35.3 23.4 24 21.7 14.4. 30 14.9 10.1 38
Exp. 5 17.2 10.0 36 7.7 4.5 39 3.0 1.8 48

The results of experiment 2, where the intensity of the Newtonian
heating and the dissipation both have been increased by a factor 2,
show that the maxima of the first Fourier component has been displaced
to an earlier time of the year by 13 days, but that the displacement is
the same for both U,, U, and U,. In addition, we find some decrease
in the annual mean value and the amplitude of the first component at
levels 3 and 4, which actually brings the result of experiment 2 in some-
what closer agreement with the observed results listed in (4.1) in this
regard.

Experiment 3 which is characterized by a low intensity of both
heating and dissipation has changes which are opposite to those of ex-
periment 2 as could be expected. However, the relative position of the
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first Fourier component at levels 1, 3 and 4 is the same in this experiment
as in experiments 1 and 2, but the amplitudes at levels 3 and 4 is definitely
too large as compared with the observed results in (4.1). A similar obser-
vation can be made for experiment 4 characterized by large heating
and small dissipation, while experiment 5 gives results where both the
annual mean values and the amplitudes of the first component are too
small as compared to (4.1) at the upper level.

Tn summary, the results of this series of experiments are that the
relative position of the first cmponent of the annual variation is about
the same even for rather radical changes in the parameters determining
the solution, and that the changes in the annual mean values and amplit-
udes are much smaller than the corresponding changes in the parameters.
The main character of the solution is maintained even during a rather
wide variation of the parameters.

6. Summary and concluding remarks.

A simple two level quasi-geostrophic model has been used to simulate
the annual behavior of the atmosphere. The model incorporates diabatic
heating in the form of Newtonian heating, internal and boundary layer
friction and a parameterization of momentum and heat transport. The
parameterization of the heat transport is made through the use of an
exchange coefficient, while the parameterization of the momentum
transport is obtained indirectly by defining an exchange coefficient for
quasi-geostrophic potential vorticity. The combined use of the exchange
coefficients for heat and potential vorticity leads to a relation between
the convergence of the momentum transport and the mean zonal winds
in the atmosphere.

The use of exchange coefficients represents an empirical and simple
way of modeling the interaction between the zonal average and the large-
scale eddies in the atmosphere. This approximation accomplishes the
task of closing the system of equations describing the behavior of the
zonally averaged quantities which therefore may be predicted without a
detailed knowledge of the individual eddies. Another way to accomplish
the same goal has been proposed by SALTZMAN and VERNERAR [2], bub
their representation does not include the seasonal variation.

In the present paper the investigation has been limited to the case
in which the meridional variation of the various dependent variables is
prescribed as a single sinuoidal component. We are therefore not attempt-
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ing to predict the detailed distribution of the zonally averaged quantities,
but are mainly interested in the annual variation.

The model is capable of predicting maximum zonal winds of the
correct order of magnitude and with a correct phase angle (s.e. time of
maximum in the annual variation). The same statement can be made for
the meridional transport of sensible heat. The momentum transport
predicted by the model is also of the correct order of magnitude both
with respect to the annual mean and the amplitude of the first Fourier
component, but the predicated phase angle increases with decreasing
pressure while the opposite variation is found from observational studies.
The main discrepancy between the predicted annual variation of energy
quantities in the model and in the atmosphere is that the predicted
quantities show a too large annual variation, while the annual mean
values and the phase angles are as correct as one can expect from this
simplified approach to the problem.

The weakest part of this approach to the annual variation of the
general circulation is undoubtedly the use of empirically derived exchange
coefficients. The use of an exchange coefficient rests on the assumption
that the transport is directed from regions of high to regions of low
values of the zonally averaged parameters. It is known that this assump-
tion becomes invalid for the heat transport in the lower stratosphere [3]
and for the transport of geostrophic potential vorticity in the lowest
part of the troposphere [7]. It seems therefore that this approach is
limited to the major part of the tropospheric flow.
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